O
/\/
©

Sysquake for LaTeX
User Manual

Embedding numerical results and graphics in LaTeX

January 2017

2 Sysquake for LaTeX

Copyright 1999-2017, Calerga Sarl.

No part of this publication may be reproduced, transmitted or stored in
any form or by any means including electronic, mechanical, recording or oth-
erwise, without the express written permission of Calerga Sarl.

The information provided in this manual is for reference and information
use only, and Calerga assumes no responsibility or liability for any inaccura-
cies or errors that may appear in this documentation.

Sysquake, LME, Calerga, the Calerga logo, and icons are copyrighted and
are protected under the Swiss and international laws. Copying this software
for any reason beyond archival purposes is a violation of copyright, and viola-
tors may be subject to civil and criminal penalties.

Sysquake, LME, and Calerga are trademarks of Calerga Sarl. All other
trademarks are the property of their respective owners.

Sysquake for LaTeX User Manual, January 2017.
Calerga Sarl, La Tour-de-Peilz, Switzerland.

Most of the material in Sysquake for LaTeX User Manual has first been writ-
ten as a set of XHTML files, with lots of cross-reference links. Since (X)HTML
is not very well suited for printing, it has been converted to LaTeX with the
help of a home-made conversion utility. Additional XML tags have been used
to benefit from LaTeX features: e.g. raster images have been replaced with
EPS images, equations have been converted from text to real mathematic no-
tation, and a table of contents and an index have been added. The same
method has been used to create the material for the help command. Thanks
to the make utility, the whole process is completely automatic. This system
has proved to be very flexible to maintain three useful formats in parallel: two
for on-line help, and one for high-quality printing.

World Wide Web: |http://www.calerga.com
E-mail: sysquake@calerga.com
Mail: Calerga Sarl
Ch. des Murs Blancs 25
1814 La Tour-de-Peilz
Switzerland

Typesetting: 2017-1-19

http://www.calerga.com
mailto:sysquake@calerga.com

Contents

[1_Introduction 7
[2 Installing Sysquake for LaTeX| 9
2.1 Windows|. e 10
2.2 MacOS| e e 11
2.3 Ubuntu, Debian or LinuxMint| 12
2.4 _Manualinstallation on Linux| 12
[3 Sysquake for LaTeX Tutorial| 15
[3.1 CreatingalaTeXfile| 15
[3.2 Add the Sysquake package|. 16
(3.3 Your first Sysquake computation| 16

4 Formattedresultsl 17

(3.5 Programs| e 17
[3.6 Graphics|. 19
3.7 Functions and libraries!. 19
[4_LME Tutoriall 21
[4.1 Simple operations|. 21
4.2 Complex Numbers| 22
4.3 Vectorsand Matricesl.o 24
[4.4 Polynomials|. 27
4.5 trings| 28
4.6 Variables| 28
4.7 Loops and Conditional Execution| 29
4.8 Functions| e 29
[4.9 local and Global Variables| 32

5 LaTeX Package Reference] 35
[5.1 Packageoptions|............ 35
[5.2 Otherpackages| 37
5.3 Commands| e e 37

4 Environment] 39

4 Sysquake for LaTeX

6.1 Programformatl

6.3 Named input arguments|

6.4 Comman§ sintax|

.7 Input an utput]
6.8 Error Messages| e

6.11 List of Commands, Functions, and Operators|
6.12 Var|a§!e Ass@nment an§ SuEscr|§t|n§|

.13 Programmin onstructs|

6.16 Operators|
[6.17 Mathematical Functions]
6.18 Linear Algebral

6.19 Array Functions|,
§2§ Tr|an§u!at|on Functlons|

.21 Integer Functions| L.
[6.22 Non-Linear Numerical Functions]
6.23 String Functions|
16.24 Quaternions|
6.25 List Functions|

6.27 Object Functions|
6.28 Logical FUNCEIONS| v v o e e e
6.29 Dynamical System Functions|
6.30 InEut/OutEut Functlons|
6.31 File System Functions|
6.32 Path Manipulation FUNCHONS]

637 Shelllottt
©.38 Graphics|.

. Remarks on graphics|.
6.40 Base Graphical Functions|.

6.41 3D Graphics|

6.42 Graphical Functions for Dynamical Systems|.
6.43 Sysquake for LaTexX FUNCEIONS| v v v v v v v e oo e e s

Contents 5

[7_Libraries! 581
7.1 stdlibl 582
72 stall 594
7.3 rODAISt . . v v 605
7.4 polynom|. e 611
[.5 ratiol o 621
A Y 1 R 624
7.7 filten 631
2% | R 641
7.9 lti(graphics)| 675
7.10 SIGENC| . . . v e e 683
ZIT WaVvl. . . oo e e e e 689
712 datel. 691
[/.13 constantsl 694
7.14 colormaps|. e 695
7.15 polyhedral 704

.................................. 709

IndeXx 717

Chapter 1

Introduction

LaTeX is a typesetting environment for generating high-quality docu-
ments, for reading on-screen (typically as PDF) or for printing. Devel-
oped by Leslie Lamport with the support of many other contributors
and the American Mathematics Society (AMS), LaTeX is extremely pop-
ular for scientific publications. LaTeX is a set of macros for TeX. From
TeX, it inherits the high quality of text layout and equation formatting,
and implementations on most computer platforms; it adds facilities for
sections, page layout, table of contents, index, etc.

Like TeX, LaTeX takes as input a text file which contains the text
to typeset and commands introduced with an escape character. To
create a document, the author typically writes this file in a text editor,
processes it with latex (a command-line tool), displays the result in a
viewer, and continues with more iterations until a satisfactory result
is obtained. Numerical results and graphics come usually from other
applications such as Sysquake.

Sysquake for LaTeX is a LaTeX package and a command tool which
let you embed Sysquake commands directly in LaTeX source files. With
it, no need to copy and format numerical results or generate EPS file by
hand; the package takes care of cumbersome tasks, letting you focus
on the creative work. Sysquake for LaTeX uses the same language and
libraries as Sysquake and other products of Calerga.

Chapter 2

Installing Sysquake for
LaTeX

Installing Sysquake for LaTeX consists in three steps:

— Copy all Sysquake for LaTeX files to your hard disk. The default
location is /opt/SysquakelLx on unix systems, and C:\Program
Files\SysquakeForLaTeX on Windows.

- Update environment variables so that sysquakelatextool
is found by the operating system and finds library files.
This consists in adding the path of the directory containing
sysquakelatextool to PATH, and setting a new environment
variable SYSQUAKELXPATH to the semicolon-separated list of
paths to library directories.

— Make your TeX distribution able to load the sysquake.sty pack-
age. In TDS-based distributions (TeX Live, teTex, MiKTeX, etc.),
this means adding the path of TexFiles to the list of TDS roots.

LaTeX must also be able to execute external programs with \writel8.
Depending on the platform, this may require to add an option argu-
ment to pdflatex, such as -shell-escape or -enable-writel8.

Caution: enabling external programs can be dangerous if you
typeset tex files from dubious origin. Depending on your needs, you
may prefer a separate configuration to typeset tex files which use
Sysquake for LaTeX, keeping the standard, more secure configuration
for other files. Sysquake for LaTeX should be used only with tex files
you trust.

10 Sysquake for LaTeX

2.1 Windows

MiKTeX

Install the latest release of MiKTeX (e.g. MiKTeX 2.9.6161). Then run
the installer of Sysquake for LaTeX and follow the instructions.
The last steps, as explained in the installer, are manual:

- Make your TeX distribution aware of Sysquake for LaTeX. You
should add a new root directory to the list of TDS directories. In
the Start menu, submenu MiKleX 2.9 (or equivalent), MiKTeX
Settings (or MiKTeX Settings (Admin)) and select the Roots tab.
Click the Add button, select directory TexFiles of Sysquake for
LaTeX, and confirm, clicking the main OK button of the MiKTeX
Options window.

— Configure your LaTeX editor to run pdflatex.exe with the
argument -shell-escape. In TeXworks, for instance, in
menu Edit>Preferences, Typesetting tab, double-click
pdfLaTeX+Makelndex+BibTeX in the Processing tool list, click the
"+" button, type -tex-option=-shell-escape, then click the
up arrow button to move the new option before $fullnames$.

TeX Live

Install the latest release of TeX Live (e.g. TeX Live 2016), then run
Sysquake for LaTeX installer and follow the instructions.
The last steps are manual:

- Make sure sysquakelatextool.exe is in the search path. Open
the Command Prompt application (e.g. by entering cmd in menu
Start>Run), and type sysquakelatextool. You should read a
few lines beginning with a percent. If you get an error message
instead (e.g. 'sysquakelatextool’ is not recognized...),
you should add its path to the PATH environment variable.
Select menu Start>Control Panel, then System, Advanced tab,
Environment Variables button, double-click the User variable
PATH and add sysquakelatextool.exe’'s path followed by a
semicolon at the beginning of what already exists. E.qg.

C:\Program Files\SysquakeForLaTeX\bin\Win32;...

— Configure your LaTeX editor to run pdflatex.exe with the
argument -shell-escape. In TeXworks, for instance, in
menu Edit>Preferences, Typesetting tab, double-click
pdfLaTeX+Makelndex+BibTeX in the Processing tool list, click the
"+" button, type -tex-option=-shell-escape, then click the
up arrow button to move the new option before $fullnames$.

Install 11

— Edit the local texmf.cnf (typically in C:\texlive\2011; you can
find it by running kpsewhich.exe texmf.conf in the Command
Prompt). If there is already a line starting with TEXMFLOCAL, add a
comma followed by the path of TexFiles in SysquakeForLaTeX,
without any quote even if there are spaces; otherwise, add the
following line (specify the correct path if you have chosen a dif-
ferent install directory):

TEXMFLOCAL = $SELFAUTOPARENT/../texmf-local,C:\Program Files\SysquakeFc

Other distributions

For other TeX distributions, please read their documentation.
Sysquake for LaTeX installer is totally independent from any other
software; you should just configure TeX so that it finds the file
sysquake.sty and can run sysquakelatextool.exe.

2.2 macOS

On macOS, Sysquake for LaTeX is distributed as a package. To install
it, just double-click its icon and accept everything. You will need an
administrator password. An alias of the documentation entry file is
put on the Desktop.

The macOS package stores the distribution in /opt/Sysquakelx
and creates the following symbolic links, also creating directories if
they do not already exist:

1n -s /opt/SysquakelLx/bin/i386-darwin/sysquakelatextool \
/usr/bin

1n -s /opt/SysquakelLx/TexFiles/tex/latex/sysquake.sty \
“/Library/texmf/tex/latex

ln -s /opt/SysquakelLx/TexFiles/tex/latex/sq-example.tex \
“/Library/texmf/tex/latex

1n -s /opt/SysquakelLx/TexFiles/doc/latex/sysquake/index.html \
“/Desktop/SQ-LaTeX.html

You should make sure to enable the execution of external programs
with \writel8. In TeXShop, for instance, open TeXShop preferences
(menu TeXShop>Preferences), display the Engine tab, then in
pdfTeX/Latex field, replace pdflatex -file-line-error
-synctex=1 with pdflatex -file-line-error -synctex=1
-shell-escape.

12 Sysquake for LaTeX

2.3 Ubuntu, Debian or Linux Mint

Sysquake for LaTeX is available as a deb package, with a dependency
on the texlive package which will also be installed if it isn’'t already
done. Double-clicking its icon should open the default package man-
agement utility for your system. You can then read its description and
install it.

Alternatively, in a terminal window, you can type the following com-
mand (replace the star and specify the exact filename if you have sev-
eral versions):

sudo dpkg -i sysquakelx-*.deb

Should you want to remove Sysquake for LaTeX, you can type the fol-
lowing command:

sudo dpkg -r sysquakelx

2.4 Manual installation on Linux

Sysquake for LaTeX is also available as a tgz archive, which can run on
other Linux distributions and gives you total flexibility for file location.
The steps below give you general directions.

- Install the latest release of TeX Live (e.g. TeX Live 2016). On
a Linux distribution using rpom packages like RedHat, Fedora or
CentOS, you can type

sudo yum install texlive tex-live-latex

On a Linux distribution using deb packages like Debian, Ubuntu
or Linux Mint, you can install TeX Live with the package manager:

sudo apt-get install -y texlive-latex-base

- Unarchive the distribution of Sysquake for LaTeX for Linux to a
suitable location, such as /opt/SysquakelLx:

tar xfz sysquakelx-x*.tgz
sudo mkdir -p /opt
sudo cp -R SysquakelLx /opt

- Have bin/i386-linux/sysquakelatextool in your PATH.
There are two ways to do it: put a symbolic link to
bin/i386-1inux/sysquakelatextool in one of your existing
program directories, such as /usr/bin or /usr/local/bin:

sudo mkdir -p /usr/local/bin
sudo ln -s /opt/SysquakelLx/bin/i386-1inux/sysquakelatextool /usr/local/bil

Install 13

or add /opt/SysquakelLx/SysquakelLx/bin/i1386-1inux to your
environment variable PATH.

— Create a new environment variable named SYSQUAKELXPATH
which contains a list of semicolon-separated paths for the
directories containing .Iml libraries. The default value is
.;./Lib; /opt/SysquakelLx/Lib, which finds standard libraries
if Sysquake for LaTeX is installed in /opt/SysquakeLx.

— Check where local TeX files are stored:
kpsewhich -var-value=TEXMFLOCAL

- Add there a symbolic link to the TexFiles directory in
SysquakelLx. Assuming you’ve stored SysquakelLx in /opt and
the directory of local TeX files given in the previous step is
/usr/local/share/texmf, type

1n -s /opt/SysquakelLx/TexFiles /usr/local/share/texmf/Sysquakelx
— Rebuild the TeX file list:

texhash

Chapter 3

Sysquake for LaTeX
Tutorial

Once installed, Sysquake for LaTeX is a LaTeX package which you can
use as easily as any other package. In this tutorial, we will create a
technical report which analyzes some of the properties of a rational
function.

Sysquake for LaTeX works at the level of the TeX program, which,
with LaTeX definitions, is usually called latex for creating DVI files, or
pdflatex for creating PDF files. You can also choose among different
applications which hide the details of running latex and displaying
the result, such as emacs on unix platforms, TeXShop on macQOS, or
Texmaker on Windows and other platforms. Sysquake for LaTeX is per-
fectly compatible with them; actually it just ignores them. So you can
keep your favorite editing environment.

And now, let us begin!

Remark: the complete source file of another example comes with
Sysquake for LaTeX.

3.1 Creating a LaTeX file

Use your usual method to create a LaTeX file and write a few things to
check that everything runs correctly. For this tutorial, we will make a
report. The LaTeX file, named for example sq-tutorial.tex, contains
something like

\documentclass[1llpt]{report}
\begin{document}

\title{Sysquake for \LaTeX{} tutorial}
\author{Calerga}

16 Sysquake for LaTeX

\date{13 August 2007}
\maketitle

\end{document}

3.2 Add the Sysquake package

Packages are sets of definitions which add new commands to
LaTeX. They are listed in the preamble of LaTeX files, between
\documentclass and \begin{document}. The Sysquake package is
added like any other package:

\documentclass[11lpt]{report}
\usepackage{sysquake}
\begin{document}

If there is an error when you typeset this file, the file sysquake.sty is
probably not found. Please refer to section Sysquake for LaTeX Instal-
lation for more informations.

Assuming there is no error, we can now use LaTeX commands for
invoking Sysquake.

3.3 Your first Sysquake computation

Since we are anxious to get a result, let us begin with something re-
ally simple. We will insert the result of 5+2 as an equation. Add the
following line between \maketitle and \end{document}:

We all know that $5+2=\sqexpr{5+2}$, don’'t we?

Running LaTeX twice will produce the result you expect. Why twice?
Like other features of LaTeX, the Sysquake package needs two
phases to do its magic. During the first phase, commands create a
file named sq-tutorial.lme (the name is built after the .tex file)
which contains Sysquake code, or more exactly code written in the
programming language of Sysquake, LME. During the second
phase, loading the sysquake package runs the command-line tool
sysquakelatextool to interpret this file. The result is written to a file
named sq-tutorial.lmeout and, if there are graphics, to EPS files.
This file contains the result as LaTeX definitions; for instance,
\sqexpr{5+2} above creates the following definition:

\def\lmefragi{%
7}

Sysquake for LaTeX Tutorial 17

Here, the name is \lmefrag followed by the expression number in
lowercase roman notation (this might change in future versions).
Sysquake commands, in addition to producing sq-tutorial.lme,
also invoke the corresponding definition to insert the result in the
final typeset document.

Note that typesetting documents is often already performed by run-
ning latex twice, or even more times, to resolve cross-references and
update the table of contents and the index. So there is nothing new.

3.4 Formatted results

Our first expression could have been computed in plain LaTeX, which
gives access to the computation capabilities of TeX. So our next exam-
ple will use an advanced LME function, magic, which produces a magic
square in a matrix. Matrices are displayed in mathematical notation.

Since matrices are too large to fit nicely in a paragraph, we put it
in an equation:

Magic square M_3 of order 3 is
\begin{equation}

M_3 = \sqgexpr{magic(3)}
\end{equation}

3.5 Programs

\sqgexpr is very convenient for simple expressions. However, it is not
suited to more complicated programs, for two reasons: first, only a
single expression can be evaluated which gives a single result. Sec-
ond, LME syntax may interfer with LaTeX syntax: the backslash, for in-
stance, is a normal character used for premultiplying with the inverse
of a matrix in LME, while it is an escape character in LaTeX. We can
always escape special characters in LaTeX, but Sysquake for LaTeX’s
aim is to make things simpler, not overly complicated.

The answer to \sgexpr’s limitations is the sysquake environment
which can contain any kind of code. Let us write another magic square
with it:

Magic square M_4 of order 4 is
\begin{equation}

M_4 =

\begin{sysquake}

magic(4)

\end{sysquake}

\end{equation}

18 Sysquake for LaTeX

The sysquake environment can contain any number of lines with any
code, unescaped, like verbatim. The only invalid character sequence
is \end{sysquake}, which marks the end of Sysquake code. If for an
unlikely reason you have to write Sysquake code which contains this
sequence of characters, add a space somewhere, or if it is in a string,
write a character with an escape sequence, e.g. \end{sysquak\145}.

Code in sysquake environment does not have the restrictions of
expressions written with \sqexpr. You can define variables, have con-
ditional executions and loops, use libraries, and more.

Contrary to \sgexpr where a single result is formatted for LaTeX,
the sysquake environment only inserts any text produced by the code
it contains in the LaTeX source. This text is still processed by LaTeX.
To format it, you can either do it yourself, inserting LaTeX commands,
or use the Sysquake function sqlxvalue. In the code fragment above,
magic(4) without semicolon writes the result as an assignment to vari-
able ans, as raw text:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

In a LaTeX equation, this does not look like a matrix. With
sqlxvalue(magic(4)), we obtain

\ensuremath{\left[\begin{array}{cccc}16
&2

&3

&13\\

5

&11

&10

&8\

9

&7

&6

&12\\

4

&14

&15
&l\end{array}\right]}

which is rendered more nicely, like with \sgexpr.

Short code fragments, such as variable assignments, can be in-
cluded with the \sgeval command. Note that its argument is pro-
cessed by LaTeX, contrary to the contents of sysquake environment.

Sysquake for LaTeX Tutorial 19

3.6 Graphics

Creating graphics for LaTeX documents is among the most cumber-
some tasks an author is facing. Sysquake for LaTeX makes it as easy
as in Sysquake itself.

Graphics are created by adding the size of the EPS image to be
created after \begin{sysquake}. The result is inserted automatically
in a picture environment of the same size. Package graphicxis used,
as well as package epstopdf in PDFLaTeX; they should be imported
explicitly with \usepackage:

\usepackage{graphicx}
\usepackage{epstopdf}

Here is an example of a function plot:

\begin{sysquake}(300,200)

a=7.2;

fplot(@(x) (x+0.3)2+axexp(-3*x72), [-2,3], 'r")
\end{sysquake}

In LaTeX, figures are usually floating. This is done with the figure
environment:

\begin{figure}

\begin{center}

\begin{sysquake}(300,200)

a=7.2;

fplot(@(x) (x+0.3)2+axexp(-3*x72), [-2,3], 'r")
\end{sysquake}

\caption{Function plot}

\end{center}

\end{figure}

3.7 Functions and libraries

Code fragments may rely on the large set of built-in operators and
functions as well as on additional functions stored in libraries. Libraries
are text files with a .Im/ suffix which contain the source code of sets
of related functions. You can use those which come with Sysquake for
LaTeX or write develop new ones, which you can share with Sysquake.

To make functions defined in a library available to Sysquake, a use
statement should be placed before any call, in a sysquake environ-
ment or a \sgeval command.

\begin{figure}
\begin{center}
\begin{sysquake} (300,200)

20 Sysquake for LaTeX

use polyhedra;
smallstellateddodecahedron;
colormap (blue2yellow2redcm) ;
plotoption nomargin;
plotoption noframe;
plotoption fill3d;
\end{sysquake}
\caption{Great dodecahedron}
\end{center}

\end{figure}

Chapter 4

LME Tutorial

This chapter introduces LME(TM) (Lightweight Math Engine), the inter-
preter for numeric computing used by Sysquake, and shows you how
to perform basic computations. It supposes you can type commands
to a command-line interface. You are invited to type the examples as
you read this tutorial and to experiment on your own. For a more sys-
tematic description of LME, please consult the LME Reference chapter.

In the examples below, we assume that LME displays a prompt >.
This is not the case for all applications. You should never type it your-
self. Enter what follows the prompt on the same line, hit the Return
key (or tap the Eval or Execute button), and observe the result.

4.1 Simple operations

LME interprets what you type at the command prompt and displays
the result unless you end the command with a semicolon. Simple ex-
pressions follow the syntactic rules of many programming languages.

> 2+3%4
ans =
14

> 2+3/4
ans =
2.75

As you can see, the evaluation order follows the usual rules which
state that the multiplication (denoted with a star) and division (slash)
have a higher priority than the addition and subtraction. You can
change this order with parenthesis:

> (243)*4
ans =
20

22 Sysquake for LaTeX

The result of expressions is automatically assigned to variable ans
(more about variables later), which you can reuse in the next expres-
sion:

> 3x*ans
ans =
60

Power is represented by the " symbol:

> 2’5
ans =
32

LME has many mathematical functions. Trigonometric functions as-
sume that angles are expressed in radians, and sqrt denotes the
square root.

> sin(pi/4) * sqrt(2)
ans =
1

4.2 Complex Numbers

In many computer languages, the square root is defined only for non-
negative arguments. However, it is extremely useful to extend the set
of numbers to remove this limitation. One defines i such that iZ = —1,
and applies all the usual algebraic rules. For instance, v—1 = Viz =i,
and v—4 = v44/=T1 = 2i. Complex numbers of the form a + bi are the
sum of a real part a and an imaginary part b. It should be mentioned
that i, the symbol used by mathematicians, is called j by engineers.
LME accepts both symbols as input, but it always writes it j. You can
use it like any function, or stick an i or j after a number:

> 2+3%j
ans =
2+3]
> 3j+2
ans =
2+3]

Many functions accept complex numbers as argument, and return a
complex result when the input requires it even if it is real:

> sqrt(-2)
ans =
0+1.41421
> exp(3+2j)

Tutorial 23

ans =
-8.3585+18.2637]
> log(-8.3585+18.2637j)
ans =

3+2j

To get the real or imaginary part of a complex number, use the func-
tions real or imag, respectively:

> real(2+3j)
ans =

2

> imag(2+3j)
ans =

3

Complex numbers can be seen as vectors in a plane. Then addition
and subtraction of complex numbers correspond to the same opera-
tions applied to the vectors. The absolute value of a complex number,
also called its magnitude, is the length of the vector:

> abs(3+4j)
ans =

5

> sqrt(32+472)
ans =

5

The argument of a complex number is the angle between the x axis
("real axis") and the vector, counterclockwise. It is calculated by the
angle function.

> angle(2+3j)
ans =
0.9828

The last function specific to complex numbers we will mention here is
conj, which calculates the conjugate of a complex number. The con-
jugate is simply the original number where the sign of the imaginary
part is changed.

> conj(2+3j)
ans =
2-3j

Real numbers are also complex numbers, with a null imaginary part;
hence

> abs(3)
ans =

24 Sysquake for LaTeX

> conj(3)
ans =

> angle(3)
ans =

> angle(-3)
ans =
3.1416

4.3 Vectors and Matrices

LME manipulates vectors and matrices as easily as scalars. To define
a matrix, enclose its contents in square brackets and use commas to
separate elements on the same row and semicolons to separate the
rows themselves:

> [1,2;5,3]
ans =

12
53
Column vectors are matrices with one column, and row vectors are
matrices with one row. You can also use the colon operator to build a
row vector by specifying the start and end values, and optionally the
step value. Note that the end value is included only if the range is a
multiple of the step. Negative steps are allowed.

There are functions to create special matrices. The zeros, ones, rand,
and randn functions create matrices full of zeros, ones, random num-
bers uniformly distributed between 0 and 1, and random numbers nor-
mally distributed with a mean of 0 and a standard deviation of 1, re-
spectively. The eye function creates an identity matrix, i.e. a matrix
with ones on the main diagonal and zeros elsewhere. All of these func-
tions can take one scalar argument n to create a square n-by-n matrix,
or two arguments m and n to create an m-by-n matrix.

Tutorial 25

> zeros(3)

ans =
0.1386 0.9274
0.3912 0.8219
> randn(2)

ans =

0.2931 1.2931
-2.3011 0.9841
> eye(3)

ans =

You can use most scalar functions with matrices; functions are applied
to each element.

> sin([1;2])
ans =
0.8415
0.9093

There are also functions which are specific to matrices. For example,
det calculates the determinant of a square matrix:

> det([1,2;5,3])
ans =
-7

Arithmetic operations can also be applied to matrices, with their usual
mathematical behavior. Additions and subtractions are performed on
each element. The multiplication symbol * is used for the product of
two matrices or a scalar and a matrix.

> [1,2;3,4] x [2;7]
ans =

16

34

26 Sysquake for LaTeX

The division symbol / denotes the multiplication by the inverse of the
right argument (which must be a square matrix). To multiply by the
inverse of the left argument, use the symbol \. This is handy to solve
a set of linear equations. For example, to find the values of x and y
such that x+ 2y =2 and 3x+ 4y =7, type

> [1,2;3,4] \ [2;7]
ans =

3

-0.5

Hence x = 3 and y = —0.5. Another way to solve this problem is
to use the inv function, which return the inverse of its argument. It is
sometimes useful to multiply or divide matrices element-wise. The .x*,
./ and .\ operators do exactly that. Note that the + and - operators
do not need special dot versions, because they perform element-wise
anyway.

> [1,2;3,4] * [2,1;5,3]
ans =
12 7
26 15
> [1,2;3,4] .x [2,1;5,3]
ans =
2 2
15 12

Some functions change the order of elements. The transpose operator
(tick) reverses the columns and the rows:

> [1,2;3,4;5,6]"
ans =

135

246
When applied to complex matrices, the complex conjugate transpose
is obtained. Use dot-tick if you just want to reverse the rows and
columns. The flipud function flips a matrix upside-down, and fliplr
flips a matrix left-right.

> flipud([1,2;3,4])
ans =
34
12
> fliplr([1,2;3,4])
ans =
21
4 3

To sort the elements of each column of a matrix, or the elements of a
row vector, use the sort function:

Tutorial 27

> sort([2,4,8,7,1,3])
ans =
123478

To get the size of a matrix, you can use the size function, which gives
you both the number of rows and the number of columns unless you
specify which of them you want in the optional second argument:

> size(rand(13,17))
ans =

13 17

> size(rand(13,17), 1)
ans =

13

> size(rand(13,17), 2)
ans =

17

4.4 Polynomials

LME handles mostly numeric values. Therefore, it cannot differenti-
ate functions like f(x) = sin(e*). However, a class of functions has a
paramount importance in numeric computing, the polynomials. Poly-
nomials are weighted sums of powers of a variable, such as 2x2 + 3x—
5. LME stores the coefficients of polynomials in row vectors; i.e. 2x2 +
3x—5 is represented as [2,3,-5], and 2x° + 3x as [2,0,0,0,3,0].

Adding two polynomials would be like adding the coefficient vectors
if they had the same size; in the general case, however, you had better
use the function addpol, which can also be used for subtraction:

> addpol([1,2],[3,7])
ans =

49

> addpol([1,2],[2,4,5])
ans =

257

> addpol([1,2],-[2,4,5])
ans =

-2 -3 -3

Multiplication of polynomials corresponds to convolution (no need to
understand what it means here) of the coefficient vectors.

> conv([1,2],[2,4,5])
ans =
2 813 10

Hence (x + 2)(2x2 + 4x + 5) = 2x3 + 8x2 + 13x + 10.

28 Sysquake for LaTeX

4.5 Strings

You type strings by delimiting them with single quotes:

> 'Hello, World!’
ans =
Hello, World!

If you want single quotes in a string, double them:

> ’'Easy, isn’’t it?’
ans =
Easy, isn’'t it?

Some control characters have a special representation. For example,
the line feed, used in LME as an end-of-line character, is \n:

> 'Hello,\nWorld!’
ans =

Hello,

World!

Strings are actually matrices of characters. You can use commas and
semicolons to build larger strings:

> [IaI’IbCI;IdeI,IfI]

ans =

abc
def

4.6 Variables

You can store the result of an expression into what is called a variable.
You can have as many variables as you want and the memory permits.
Each variable has a name to retrieve the value it contains. You can
change the value of a variable as often as you want.

> a = 3;
>a+5
ans =
8

> a = 4;
>a+5
ans =
9

Note that a command terminated by a semicolon does not display its
result. To see the result, remove the semicolon, or use a comma if
you have several commands on the same line. Implicit assignment to
variable ans is not performed when you assign to another variable or
when you just display the contents of a variable.

Tutorial 29

> a =3

a:

3
>a=7,b=3+2%xa
a:

7

b=

17

4.7 Loops and Conditional Execution

To repeat the execution of some commands, you can use either a
for/end block or a while/end block. With for, you use a variable
as a counter:

> for i=1:3;1i,end

With while, the commands are repeated as long as some expression
is true:

>1i=1; while i < 10; i =2 x i, end

You can choose to execute some commands only if a condition holds
true :

> if 2 < 3;'ok’,else; "amazing...’,end
ans =
ok

4.8 Functions

LME permits you to extend its set of functions with your own. This is
convenient not only when you want to perform the same computation
on different values, but also to make you code clearer by dividing the
whole task in smaller blocks and giving names to them. To define a

30 Sysquake for LaTeX

new function, you have to write its code in a file; you cannot do it from
the command line. In Sysquake, put them in a function block.

Functions begin with a header which specifies its name, its input
arguments (parameters which are provided by the calling expression)
and its output arguments (result of the function). The input and out-
put arguments are optional. The function header is followed by the
code which is executed when the function is called. This code can use
arguments like any other variables.

We will first define a function without any argument, which just
displays a magic square, the sum of each line, and the sum of each
column:

function magicsum3
magic_3 = magic(3)
sum_of_each_line = sum(magic_3, 2)
sum_of_each_column = sum(magic_3, 1)

You can call the function just by typing its name in the command line:

> magicsum3
magic_3 =

816

357

492
sum_of_each_line =

15

15

15
sum_of_each_column =

15 15 15

This function is limited to a single size. For more generality, let us add
an input argument:

function magicsum(n)
magc = magic(n)
sum_of_each_line = sum(magc, 2)
sum_of_each_column = sum(magc, 1)

When you call this function, add an argument:

> magicsum(2)
magc =
13
4 2
sum_of_each_line =
4
6
sum_of_each_column =
55

Tutorial 31

Note that since there is no 2-by-2 magic square, magic(2) gives some-
thing else... Finally, let us define a function which returns the sum of
each line and the sum of each column:

function (sum_of_each_line, sum_of_each_column) = magicSum(n)
magc = magic(n);
sum_of_each_1line = sum(magc, 2);
sum_of_each_column = sum(magc, 1);

Since we can obtain the result by other means, we have added semi-
colons after each statement to suppress any output. Note the upper-
case S in the function name: for LME, this function is different from
the previous one. To retrieve the results, use the same syntax:

> (sl, sc) = magicSum(3)
sl =

15

15

15
sC =

15 15 15

You do not have to retrieve all the output arguments. To get only the
first one, just type

> sl = magicSum(3)
sl =

15

15

15

When you retrieve only one output argument, you can use it directly
in an expression:

> magicSum(3) + 3
ans =

18

18

18

One of the important benefits of defining function is that the variables
have a limited scope. Using a variable inside the function does not
make it available from the outside; thus, you can use common names
(such as x and y) without worrying about whether they are used in
some other part of your whole program. For instance, let us use one
of the variables of magicSum:

> magc = 77
magc =
77

32 Sysquake for LaTeX

> magicSum(3) + magc
ans =
92
92
92
> magc
magc =
77

4.9 Local and Global Variables

When a value is assigned to a variable which has never been refer-
enced, a new variable is created. It is visible only in the current con-
text: the base workspace for assignments made from the command-
line interface, or the current function invocation for functions. The
variable is discarded when the function returns to its caller.

Variables can also be declared to be global, i.e. to survive the end of
the function and to support sharing among several functions and the
base workspace. Global variables are declared with keyword global:

global x
global y z

A global variable is unique if its name is unique, even if it is declared
in several functions.

In the following example, we define functions which implement a
queue which contains scalar numbers. The queue is stored in a global
variable named QUEUE. Elements are added at the front of the vector
with function queueput, and retrieved from the end of the vector with
function queueget.

function queueput(x)
global QUEUE;
QUEUE = [x, QUEUE];

function x = queueget
global QUEUE;
X = QUEUE(end);
QUEUE(end) = [1;

Both functions must declare QUEUE as global; otherwise, the variable
would be local, even if there exists also a global variable defined else-
where. The first time a global variable is defined, its value is set to
the empty matrix []. In our case, there is no need to initialized it to
another value.

Here is how these functions can be used.

Tutorial 33

> queueput(1l);
> queueget
ans =

1
> queueput(123);
> queueput(2+3j);
> queueget
ans =

123
> queueget
ans =

2 + 3j

To observe the value of QUEUE from the command-line interface, QUEUE
must be declared global there. If a local variable QUEUE already exists,
it is discarded.

> global QUEUE
> QUEUE
QUEUE =

[]
> queueput(25);
> queueput(17);
> QUEUE
QUEUE =

17 25

Chapter 5

LaTeX Package
Reference

This section documents the LaTeX package sysquake.sty. This pack-
age permits to embed in LaTeX source files (.tex suffix) fragments of
code written in LME, the programming language of Sysquake. All these
fragments are evaluated successively in the same context: definitions
and variables can be reused across multiple fragments.

5.1 Package options

The package is imported in the main LaTeX source file with
\usepackage:

\usepackage{sysquake}

Several options can be specified in a comma-separated list in square
brackets; for example

\usepackage[latexingraphics,noseparatelogfile]{sysquake}
Here is a list of all supported options.

latexingraphics By default, text in graphics is embedded in EPS
files without further processing. In addition to axis scale labels,
graphical commands which display explicit text are label, legend,
text, and title.

With option latexingraphics, all the text which appears in graph-
ics in handled by LaTeX. This has two benefits: first, text font and
size mix much better with the document text, for a higher overall
quality. Second, LaTeX constructs can appear anywhere in graph-
ics, with greek letters, math symbols and equations. A small draw-
back is that some characters, such as \ and $, have a special

36 Sysquake for LaTeX

meaning for LaTeX which make the code incompatible with other
versions of Sysquake.

noexec Each time the document is typeset, Sysquake code frag-
ments which have been extracted during the previous iteration are
evaluated by a platform-dependant program, sysquakelatextool.
This program produces output data fragments which are inserted
in the document, and EPS files which contain graphics.

With option noexec, sysquakelatextool is not executed. The
typesetting result will still be correct if all its output files (.Imeout
and .eps files) already exist and code fragments, and the size of
all text strings displayed in graphics if option latexingraphics is
used, are not modified.

The main purpose of this option is to let an author make minor
modifications on a platform where sysquakelatextool is not sup-
ported.

noseparatelogfile By default, standard error channel used when
evaluating Sysquake code fragments is redirected to a file whose
base name is the same as the main .tex file and the suffix is
.lmelog. This file can be opened after typesetting to check that
all code fragments were executed correctly. This is especially im-
portant when an error occurs, when a code fragment is replaced
with ??sysquake?? in the typeset result.

The noseparatelogfile option merges the Sysquake standard er-
ror channel with other LaTeX messages.

includelog |Instead of storing error and warning messages in
a separate file (default) or in the main log file (option
noseparatelogfile), with option includelog, this information is
appended directly to the typeset output (PDF or DVI file). A
reference is added to the code fragment result, which becomes
??sysquake?? (see LME log). If the package hyperref is used,
the words LME log are a hypertext link to the error and warning
messages.

Additional options with arguments can be set with special LaTeX com-
mands:

\sysquakesize{n} Specifies the amount of memory allocated to
Sysquake for LaTeX in megabytes. For special purposes such as
large images, a large amount, such as 128 or 256, can be specified.

\sysquakelinewidth{w} Specifies the normal line width in EPS
files, in 1/72 inch. The default value is 1.

\sysquakepath{path} Specifies the list of paths where libraries
are searched; each path is separated with a semicolon. By default,

LaTeX Package Reference 37

libraries are searched where the installer has placed the standard
libraries distributed with Sysquake for LaTeX, and in the same di-
rectory as the .tex file being processed.

5.2 Other packages

Package sysquake.sty depends on other packages for some tasks.
You should also import them with \usepackage if necessary.

graphicx Used to include EPS graphics generated by Sysquake for
LaTeX.

epstopdf Used by pdflatex to convert EPS graphics to PDF
pdflatex cannot include directly EPS files.

hyperref Used for hypertext links created by writing text markup
to file descriptor 4.

listings Used for listings of LME functions inserted with
sqlxsource.

The preamble of an article which needs all these packages could be as
follows. There is no harm in importing superfluous packages.

\documentclass{article}
\usepackage[latexingraphics,noseparatelogfile]{sysquake}
\usepackage{graphicx}

\usepackage{epstopdf}

\usepackage{hyperref}

\usepackage{listings}

\begin{document}

\end{document}

5.3 Commands

Any text output produced by code fragments is inserted in the LaTeX
source code. It is subject to further evaluation by LaTeX.

\sgeval

\sgeval{code} evaluates code fragment code, which is processed as
LaTeX code before being evaluated by Sysquake for LaTeX; hence char-
acters aimed at Sysquake which have a meaning in LaTeX, such as \
and $, must be escaped.

38 Sysquake for LaTeX

Examples

Simple value:
The result is \sqeval{disp(1l+2);}.
Passing a LaTeX counter:

\newcounter{n}
\setcounter{n}{10}
The square root of \arabic{n} is \sqeval{disp(sqrt(\arabic{n}));}.

\sqgexpr

\sqexpr{expr} evaluates expression expr, formats it for LaTeX and
inserts it in the result. The expression should not be terminated by a
semicolon or comma.

Currently, the following types are supported: real or complex dou-
ble, scalar or 2-dim arrays, and strings. Options set by format are
used; scientific notation is displayed with the mathematical notation
(a multiplication by 10 to some integer power) instead of the classic
computer notation.

\sgexpr can be used in text as well as in math mode. It is a fragile
command; to use it in a moving argument, such as the argument of
\caption, put \protect right before it.

Examples

Scalar value in an equation:

Some small number:
$\frac{\pi}{e'{10}} = \sgexpr{pi/exp(10)}$.

Magic square of size 5:

\[
M_5 = \sqexpr{magic(5)}
\1

Fragile command:

\caption{Simulation with $\alpha=\protect\sqgexpr{2+*3.9}$}

LaTeX Package Reference 39

5.4 Environment

\begin{sysquake} ... \end{sysquake}

Text in the sysquake environment is interpreted verbatim as LME code.
All LaTeX constructs are ignored, except for the terminating string
\end{sysquake}. Standard output produced by functions like disp
and fprintf is inserted in the output, where it is processed by LaTeX.

Remark: the sysquake environment uses the verbatim package.
In the beamer class, the [fragile] option should be added to frames
where it is used. See below for an example.

Example

In the fragment below, the eigenvalues of a magic square are com-
puted and displayed in a loop. Function fprintf is used to display
symbols with and sqlxvalue to format the numbers.

R’s eigenvalues λ_i are
\begin{sysquake}
R = magic(3);
lambda = eig(R);
for i = 1l:1length(lambda)
fprintf(’'\\[\\lambda_%d = %s \\1\n’', i, sqlxvalue(lambda(i)));
end
\end{sysquake}

\begin{sysquake}(w,h) ... \end{sysquake}

\begin{sysquake} (w, h) starts an environment where sysquake code
is evaluated, like \begin{sysquake}. In addition, an EPS file with
width w and height h is created with all the output produced by
graphical commands the code fragment contains. This EPS s
inserted in the LaTeX document in a picture environment with the
\includegraphics command of package graphicx.

Example

The fragment below defines a floating figure with the step response
of the transfer function 1/(s"3+2s"2+3s+4). We assume the
latexingraphics option of the sysquake package, so that text is
processed by LaTeX (see above).

\begin{figure}
\begin{center}
\begin{sysquake}(300,200)
step(1l, [1,2,3,4]);

40 Sysquake for LaTeX

label('t’, "$\\psis$’);

legend ("$\\psi(t)=\\int_0"\\infty g(\\tau)s(t-\\tau){\\rm d}\\taus$’);
\end{sysquake}

\caption{Step response}

\end{center}

\end{figure}

Here is an example of a plot in a document with class beamer. Note
the use of the option [fragile] required by the frame environment.

\documentclass{beamer}
\usepackage[latexingraphics]{sysquake}
\usepackage{graphicx}

\usepackage{epstopdf}

\begin{document}

\begin{frame}[fragile] \frametitle{Graphics}
\begin{sysquake}(280,200)

fplot(@(x) (x+0.3)"2+7.2xexp(-3%xx"2), [-2,3], 'r’);
\end{sysquake}

\end{frame}

\end{document}

Chapter 6

LME Reference

This chapter describes LME (Lightweight Math Engine), the interpreter
for numeric computing used by Sysquake.

6.1 Program format

Statements

An LME program, or a code fragment typed at a command line, is com-
posed of statements. A statement can be either a simple expression,
a variable assignment, or a programming construct. Statements are
separated by commas, semicolons, or end of lines. The end of line has
the same meaning as a comma, unless the line ends with a semicolon.
When simple expressions and assignments are followed by a comma
(or an end of line), the result is displayed to the standard output; when
they are followed by a semicolon, no output is produced. What follows
programming constructs does not matter.

When typed at the command line, the result of simple expressions
is assigned to the variable ans; this makes easy reusing intermediate
results in successive expressions.

Continuation characters

A statement can span over several lines, provided all the lines but the
last one end with three dots. For example,

1+ ...
2

is equivalent to 1 + 2. After the three dots, the remaining of the line,
as well as empty lines and lines which contain only spaces, are ig-
nored.

42 Sysquake for LaTeX

Inside parenthesis or braces, line breaks are permitted even if they
are not escaped by three dots. Inside brackets, line breaks are ma-
trix row separators, like semicolons, unless they follow a comma or a
semicolon where they are ignored.

Comments

Unless when it is part of a string enclosed between single ticks, a
single percent character or two slash characters mark the beginning
of a comment, which continues until the end of the line and is ignored
by LME. Comments must follow continuation characters, if any.

a=2; % comment at the end of a line

X =5; // another comment

% comment spanning the whole line

b= ... % comment after the continuation characters
a;
3% no need to put spaces before the percent sign

Q
o

%’'; % percent characters in a string

Comments may also be enclosed between /* and x/; in that case,
they can span several lines.

Pragmas

Pragmas are directives for the LME compiler. They can be placed at
the same location as LME statements, i.e. in separate lines or between
semicolons or commas. They have the following syntax:

_pragma name arguments

where name is the pragma name and arguments are additional data
whose meaning depends on the pragma.

Currently, only one pragma is defined. Pragmas with unknown
names are ignored.

Name Arguments Effect
line n Set the current line number to n

_pragma line 120 sets the current line number as reported by er-
ror messages or used by the debugger or profiler to 120. This can
be useful when the LME source code has been generated by process-
ing another file, and line numbers displayed in error messages should
refer to the original file.

LME Reference 43

6.2 Function Call

Functions are fragments of code which can use input arguments as
parameters and produce output arguments as results. They can be
built in LME (built-in functions), loaded from optional extensions, or
defined with LME statements (user functions).

A function call is the action of executing a function, maybe with
input and/or output arguments. LME supports different syntaxes.

fun

fun()

fun(inl)

fun(inl, in2,...)

outl = fun...

(outl, out2,) = fun...
[outl, out2, ...] = fun...
[outl out2 ...] = fun...

Input arguments are enclosed between parenthesis. They are passed
to the called function by value, which means that they cannot be mod-
ified by the called function. When a function is called without any input
argument, parenthesis may be omitted.

Output arguments are assigned to variables or part of variables
(structure field, list element, or array element). A single output argu-
ment is specified on the left on an equal character. Several output
arguments must be enclosed between parenthesis or square brackets
(arguments can simply be separated by spaces when they are en-
closed in brackets). Parenthesis and square brackets are equivalent
as far as LME is concerned; parenthesis are preferred in LME code, but
square brackets are available for compatibility with third-party appli-
cations.

Output arguments can be discarded without assigning them to vari-
ables either by providing a shorter list of variables if the arguments to
be discarded are at the end, or by replacing their name with a tilde
character. For example to get the index of the maximum value in a
vector and to discard the value itself:

(", index) = max([2, 1, 5, 31);

6.3 Named input arguments

Input arguments are usually recognized by their position. Some func-
tions also differentiate them by their data type. This can lead to code
which is difficult to write and to maintain. A third method to distin-
guish the input arguments of a function is to tag them with a name,
with a syntax similar to an assignment. Named arguments must follow
unnamed arguments.

44 Sysquake for LaTeX

fun(l, [2,3], dim=2, order=1);

For some functions, named arguments are an alternative to a se-
guence of unnamed arguments.

6.4 Command syntax

When a function has only literal character strings as input arguments,
a simpler syntax can be used. The following conditions must be satis-
fied:

— No output argument.
— Each input argument must be a literal string

— without any space, tabulator, comma or semicolon,

- beginning with a letter, a digit or one of ’-/.:*" (minus, slash,
dot, colon, or star),

- containing at least one letter or digit.

In that case, the following syntax is accepted; left and right columns
are equivalent.

fun strl fun(’'strl’)
fun strl str2 fun(’'strl’,’'str2’)
fun abc,def fun(’abc’),def

Arguments can also be quoted strings; in that case, they may con-
tain spaces, tabulators, commas, semicolons, and escape sequences
beginning with a backslash (see below for a description of the string
data type). Quoted and unquoted arguments can be mixed:

fun ’'a bc\n’ fun(’'a bc\n’)
fun strl ’'str 2’ fun(’'strl’,’str 2')

The command syntax is especially useful for functions which accept
well-known options represented as strings, such as format loose.

6.5 Libraries

Libraries are collections of user functions, identified in LME by a name.
Typically, they are stored in a file whose name is the library name with
a ".Iml" suffix (for instance, library stdlib is stored in file "stdlib.Iml").
Before a user function can be called, its library must be loaded with
the use statement. use statements have an effect only in the context
where they are placed, i.e. in a library, or the command-line interface,

LME Reference 45

or a Sysquake SQ file; this way, different libraries may define functions
with the same name provided they are not used in the same context.
In a library, functions can be public or private. Public functions
may be called from any context which use the library, while private
functions are visible only from the library they are defined in.

6.6 Types

Numerical, logical, and character arrays

The basic type of LME is the two-dimensional array, or matrix. Scalar
numbers and row or column vectors are special kinds of matrices. Ar-
rays with more than two dimensions are also supported. All elements
have the same type, which are described in the table below. Two non-
numeric types exist for character arrays and logical (boolean) arrays.
Cell arrays, which contain composite types, are described in a section
below.

Type Description

double 64-bit IEEE number
complex double Two 64-bit IEEE numbers
single 32-bit IEEE number
complex single Two 32-bit IEEE numbers
uint32 32-bit unsigned integer
int32 32-bit signed integer
uintl6 16-bit unsigned integer
intle 16-bit signed integer
uint8 8-bit unsigned integer
int8 8-bit signed integer
uint64 64-bit unsigned integer
int64 64-bit signed integer

64-bit integer numbers are not supported by all applications on all
platforms.

These basic types can be used to represent many mathematic ob-
jects:

Scalar One-by-one matrix.

Vector n-by-one or one-by-n matrix. Functions which return vec-
tors usually give a column vector, i.e. n-by-one.

Empty object 0-by-0 matrix (0-by-n or n-by-0 matrices are always
converted to 0-by-0 matrices).

Polynomial of degree d 1-by-(d+1) vector containing the coeffi-
cients of the polynomial of degree d, highest power first.

46 Sysquake for LaTeX

List of n polynomials of same degreed n-by-(d+1) matrix con-
taining the coefficients of the polynomials, highest power at left.

List of n roots n-by-1 matrix.

List of n roots for m polynomials of same degree n n-by-m
matrix.

Single index One-by-one matrix.

List of indices Any kind of matrix; the real part of each element
taken row by row is used.

Sets Numerical array, or list or cell array of strings (see below).

Boolean value One-by-one logical array; 0 means false, and any
other value (including nan) means true (comparison and logical
operators and functions return logical values). In programs and
expressions, constant boolean values are entered as false and
true. Scalar boolean values are displayed as false or true; in
arrays, respectively as F or T.

String Usually 1-by-n char array, but any shape of char arrays are
also accepted by most functions.

Unless a conversion function is used explicitly, numbers are repre-
sented by double or complex values. Most mathematical functions ac-
cept as input any type of humeric value and convert them to double;
they return a real or complex value according to their mathematical
definition.

Basic element-wise arithmetic and comparison operators accept di-
rectly integer types ("element-wise" means the operators + - .* ./ .\
and the functions mod and rem, as well as operators * / \ with a scalar
multiplicand or divisor). If their arguments do not have the same type,
they are converted to the size of the largest argument size, in the fol-
lowing order:

double > single > uint64 > int64 > uint32 > int32 > uintl6
> intl6 > uint8 > int8

Literal two-dimensional arrays are enclosed in brackets. Rows are
separated with semicolons or line breaks, and row elements with com-
mas or spaces. Here are three different ways to write the same 2-by-3
double array.

LME Reference 47

Functions which manipulate arrays (such as reshape which changes
their size or repmat which replicates them) preserve their type.

To convert arrays to numeric, char, or logical arrays, use functions
+ (unary operator), char, or logical respectively. To convert the nu-
meric types, use functions double, single, or uint8 and similar func-
tions.

Numbers

Double and complex numbers are stored as floating-point numbers,
whose finite accuracy depends on the number magnitude. During
computations, round-off errors can accumulate and lead to visible ar-
tifacts; for example, 2-sqrt(2)*sqrt(2), which is mathematically 0,
yields -4.4409e-16. Integers whose absolute value is smaller than
2’52 (about 4.5e15) have an exact representation, though.

Literal double numbers (constant numbers given by their numeric
value) have an optional sign, an integer part, an optional fractional
part following a dot, and an optional exponent. The exponent is the
power of ten which multiplies the number; it is made of the letter 'e’
or 'E’ followed by an optional sign and an integer number. Numbers
too large to be represented by the floating-point format are changed
to plus or minus infinity; too small numbers are changed to 0. Here
are some examples (numbers on the same line are equivalent):

123 +123 123. 123.00 12300e-2
-2.5 -25e-1 -0.25el -0.25e+1
0 0.0 -0 1e-99999

inf 1e999999

-inf -1e999999

Literal integer numbers may also be expressed in hexadecimal with
prefix 0x, in octal with prefix 0, or in binary with prefix 0b. The four
literals below all represent 11, stored as double:

Oxb
013
0b1011
11

Literal integer numbers stored as integers and literal single numbers
are followed by a suffix to specify their type, such as 2int16 for the
number 2 stored as a two-byte signed number or 0x300uint32 for the
number whose decimal representation is 768 stored as a four-byte un-
signed number. All the integer types are valid, as well as single. This
syntax gives the same result as the call to the corresponding function
(e.g. 2int16 is the same as int16(2)), except when the integer num-
ber cannot be represented with a double; then the number is rounded

48 Sysquake for LaTeX

to the nearest value which can be represented with a double. Compare
the expressions below:

Expression Value
uint64(123456789012345678) 123456789012345696
123456789012345678uint64 123456789012345678

Literal complex numbers are written as the sum or difference of
a real number and an imaginary number. Literal imaginary numbers
are written as double numbers with an i or j suffix, like 2i, 3.7e5j, or
Oxffj. Functions i and j can also be used when there are no variables
of the same name, but should be avoided for safety reasons.

The suffices for single and imaginary can be combined as isingle
or jsingle, in this order only:

2jsingle
3single + 4isingle

Command format is used to specify how numbers are displayed.

Strings

Strings are stored as arrays (usually row vectors) of 16-bit unsigned
numbers. Literal strings are enclosed in single quotes:

"Example of string’

r

The second string is empty. For special characters, the following es-
cape sequences are recognized:

Character Escape seq. Character code
Null \O 0

Bell \a 7

Backspace \b 8

Horizontal tab \t 9

Line feed \n 10

Vertical tab \Vv 11

Form feed \f 12

Carriage return \r 13

Single tick \’ 39

Single tick " (two ') 39

Backslash \\ 92

Hexadecimal number \xhh hh

Octal number \ooo 000

16-bit UTF-16 \uhhhh 1 UTF-16 code
21-bit UTF-32 \Uhhhhhhhh 1 or 2 UTF-16 codes

For octal and hexadecimal representations, up to 3 (octal) or 2 (hex-
adecimal) digits are decoded; the first non-octal or non-hexadecimal

LME Reference 49

digit marks the end of the sequence. The null character can conve-
niently be encoded with its octal representation, \0, provided it is not
followed by octal digits (it should be written \000 in that case). It is an
error when another character is found after the backslash. Single ticks
can be represented either by a backslash followed by a single tick, or
by two single ticks.

Depending on the application and the operating system, strings can
contain directly Unicode characters encoded as UTF-8, or MBCS (multi-
byte character sequences). 16-bit characters encoded with \uhhhh
escape sequences are always accepted and handled correctly by all
built-in LME functions (low-level input/output to files and devices which
are byte-oriented is an exception; explicit UTF-8 conversion should be
performed if necessary).

UTF-32 sequences \Uhhhhhhhh assume UTF-16 encoding. In se-
quences \uhhhh and \Uhhhhhhhh, up to 4 or 8 hexadecimal digits
can be provided, respectively, but the first non-hexadecimal character
marks the end of the sequence.

Inline data

For large amounts of text or binary data, the syntax described above
is impractical. Inline data is a special syntax for storing strings as raw
text or uint8 arrays as base64.

Strings (char arrays of dimension 1-by-n) can be defined in the
source code as raw text without any escape sequence with the fol-
lowing syntax:

@/text marker
text
marker

where @/text is that literal sequence of six characters followed or not
by spaces and tabs, marker is an arbitrary sequence of characters
without spaces, tabs or end-of-lines which does not occur in the text,
and text is the text itself. The spaces, tabs and first end-of-line which
follow the first marker are ignored. The last marker must be at the
beginning of a line; this means that the string always ends with an
end-of-line. The whole text inline data is equivalent to a string with
the corresponding characters and can be located in an assignment or
any expression. End-of-line sequences (\n, \r or \r\n) are replaced by
a single linefeed character.

Here is an example of a short fragment of C code, assigned to vari-
able src. The sequence \n is not interpreted as an escape sequence
by LME; it results in the two characters \ and n in src. The trailing
semicolon suppresses the display of the assignment, like in any LME
expression.

50 Sysquake for LaTeX

src = @/text"""
int main() {

printf("Hello, data!\n");
}

wun,
’

Arrays of uint8, of dimension n-by-1 (column vectors), can be defined
in the source code in a compact way using the base64 encoding in
inline data:

@/base64 data

where @/baseb4 is that literal sequence of eight characters, followed
by spaces and/or line breaks, and the data encoded with base64 (see
RFC 2045). The base64-encoded data can contain lowercase and up-
percase letters a-z and A-Z, digits 0-9, and characters / (slash) and +
(plus), and is followed by 0, 1 or 2 characters = (equal) for padding.
Spaces, tabs and line breaks are ignored. Comments are not allowed.

The first character which is not a valid base64 character signals the
end of the inline data and the beginning of the next token of source
code. Inline data can be a part of any expression, assignment or func-
tion call, like any other literal value. In the case where the inline data
is followed by a character which would erroneously be interpreted as
more base64 codes (e.g. neither padding with = nor statement termi-
nator and a keyword at the beginning of the following line), it should
be enclosed in parenthesis.

Inline data can be generated with the base64encode function. For
example, to encode uint8(0:255) .’ as inline data, you can evaluate

base64encode(uint8(0:255))

Then copy and paste the result to the source code, for instance as
follows to set a variable d (note how the semicolon will be interpreted
as the delimiter following the inline data, not the data iteself):

d = @/baseb4
AAECAWQFBgcICQoLDAOODXAREhMUFRYXGBkaGxwdHh8gISIjICUmlygpKiss
LS4vMDEyMzQ1Njc40To7PDO+POBBQkNERUZHSETLKSOXNTKOQUVITVFVWV1hZ
WLltcXV5FfYGFiY2R1ZmdoaWprbGlub3BxcnNOdXZ3eH16e3x9fn+AgYKDhIWG
h4i1JiouMjY6PkJGSk5SV1peYmZgbnl2en6ChoqOkpaangKmgqgbytrg+wsbKz
tLW2t71i5uru8vb6/wMHCw8TFxsfIycrLzM30z9DROtPU1ldbX2Nna29zd3t/g
4elLj50Xm5+jpbuvs7e7v8PHy8/T19vf4+fr7/P3+/w== ;

Lists and cell arrays

Lists are ordered sets of other elements. They may be made of any
type, including lists. Literal lists are enclosed in braces; elements are
separated with commas.

LME Reference 51

{1,13,6;2,91,"’abc’, {1, 'xx"}}
Lists can be empty:
{}

List's purpose is to collect any kind of data which can be assigned to
variables or passed as arguments to functions.

Cell arrays are arrays whose elements (or cells) contain data of any
type. They differ from lists only by having more than one dimension.
Most functions which expect lists also accept cell arrays; functions
which expect cell arrays treat lists of n elements as 1-by-n cell arrays.

To create a cell array with 2 dimensions, cells are written between
braces, where rows are separated with semicolons and row elements
with commas:

{1, ’abc’; 27, true}

Since the use of braces without semicolon produces a list, there is no
direct way to create a cell array with a single row, or an empty cell
array. Most of the time, this is not a problem since lists are accepted
where cell arrays are expected. To force the creation of a cell array,
the reshape function can be used:

reshape({’'ab’, ’'cde’'}, 1, 2)

Structures

Like lists and cell arrays, structures are sets of data of any type. While
list elements are ordered but unnamed, structure elements, called
fields, have a name which is used to access them.

There are three ways to make structures: with field assignment
syntax inside braces, with the struct function, or by setting each field
in an assignment. s.f refers to the value of the field named f in the
structure s. Usually, s is the name of a variable; but unless it is in the
left part of an assignment, it can be any expression which evaluates
to a structure.

a = {label = 'A’, position = [2, 3]1};
b = struct(name = ’'Sysquake’,
os = {'Windows’, 'mac0S’, 'Linux’});
c.x = 200;
c.y = 280;
c.radius = 90;

52 Sysquake for LaTeX

With the assignments above, a.o0s{3} is 'Linux’ and c.s.radius is
90.

While the primary way to access structure fields is by name, field
order is still preserved, as can be seen by displaying the strcture,
getting the field names with fieldnames, or converting the structure
to a cell array with struct2cell. The fields can be reordered with
orderfields.

Structure arrays

While structure fields can contain any type of array and cell arrays
can have structures stored in their cells, structure arrays are arrays
where each element has the same named fields. Plain structures are
structure arrays of size [1, 1], like scalar numbers are arrays of size
[1,1].

Values are specified first by indices between parenthesis, then by
field name. Braces are invalid to access elements of structure arrays
(they can be used to access elements of cell arrays stored in structure
array fields).

Structure arrays are created from cell arrays with functions
structarray or cell2struct, or by assigning values to fields.

A = structarray(’'name’, {’dog’,’cat’},
'weight’, {[3,100],[3,181});

B = cell2struct({’dog’,’'cat’;[3,100],[3,18]},
{'name’, 'weight'});

C(1,1).name = 'dog’;

C(1,1).weight = [3,100];

C(1,2).name = ’'cat’;

C(1,2).weight = [3,18];

Column struct arrays (1-dimension) can be defined with field assign-
ments inside braces by separating array elements with semicolons.
Missing fields are set to the empty array [].

D={a=1, b=2; a=5, b=3; b=28};

Value sequences

Value sequences are usually written as values separated with com-
mas. They are used as function input arguments or row elements in
arrays or lists.

When expressions involving lists, cell arrays or structure arrays
evaluate to multiple values, these values are considered as a value
sequence, or part of a value sequence, and used as such in context

LME Reference 53

where value sequences are expected. The number of values can be
known only at execution time, and may be zero.

{1, 2};
[L{:}]; // convert L to a row vector
complex(L{:}); // convert L to a complex number

L
v
C

Value sequences can arise from element access of list or cell arrays
with brace indexing, or from structure arrays with field access with or
without parenthesis indexing.

Function references

Function references are equivalent to the name of a function together
with the context in which they are created. Their main use is as argu-
ment to other functions. They are obtained with operator @.

Inline and anonymous functions

Inline and anonymous functions encapsulate executable code. They
differ only in the way they are created: inline functions are made with
function inline, while anonymous functions have special syntax and
semantics where the values of variables in the current context can be
captured implicitly without being listed as argument. Their main use
is as argument to other functions.

Sets

Sets are represented with numeric arrays of any type (integer, real
or complex double or single, character, or logical), or lists or cell ar-
rays of strings. Members correspond to an element of the array or list.
All set-related functions accept sets with multiple values, which are
always reduced to unique values with function unique. They imple-
ment membership test, union, intersection, difference, and exclusive
or. Numerical sets can be mixed; the result has the same type as when
mixing numeric types in array concatenation. Numerical sets and list
or cell arrays os strings cannot be mixed.

Null stands for the lack of data. It is both a data type and the only
value it can represent. It can be assigned to a variable, be contained
in a list or cell array element or a structure field, or passed as an input
or output argument to/from a function.

Null is a recent addition to LME, where the lack of data is usually
represented by the empty matrix []. It is especially useful when LME

54 Sysquake for LaTeX

is interfaced with languages or libraries where the null value has a
special meaning, such as SQL (Structured Query Language, used with
relational databases) or the DOM (Document Object Model, used with
XML).

Objects

Objects are the basis of Object-Oriented Programming (OOP), an ap-
proach of programming which puts the emphasis on encapsulated
data with a known programmatic interface (the objects). Two OOP
languages in common use today are C++ and Java.

The exact definition of OOP varies from person to person. Here is
what it means when it relates to LME:

Data encapsulation Objects contain data, but the data cannot be
accessed directly from the outside. All accesses are performed via
special functions, called methods. What links a particular method
to a particular object is a class. Class are identified with a name.
When an object is created, its class name is specified. The names
of methods able to act on objects of a particular class are prefixed
with the class name followed with two colons. Objects are special
structures whose contents are accessible only to its methods.

Function and operator overloading Methods may have the
same name as regular functions. When LME has to call a function,
it first checks the type of the input arguments. If one of them is an
object, the corresponding method is called, rather than the
function defined for non-object arguments. A method which has
the same name as a function or another method is said to
overload it. User functions as well as built-in ones can be
overloaded. Operators which have a function name (for instance
x+y can also be written plus(x,y)) can also be overloaded.
Special functions, called object constructors, have the same name
as the class and create new objects. They are also methods of the
class, even if their input arguments are not necessarily objects.

Inheritance A class (subclass) may extend the data and methods
of another class (base class or parent). It is said to inherit from the
parent. In LME, objects from a subclass contain in a special field
an object of the parent class; the field name has the same name
as the parent class. If LME does not find a method for an object, it
tries to find one for its parent, great-parent, etc. if any. An object
can also inherit from several parents.

Here is an example of the use of polynom objects, which (as can
be guessed from their name) contain polynomials. Statement use
polynom imports the definitions of methods for class polynom and oth-
ers.

LME Reference 55

use polynom;
p = polynom([1,5,0,1])

X"3+5x"2+1
=p2+ 3 *p/ polynom([1,0])
q:
X"6+10X"5+25Xx"4+2x"3+13x 2+15x+1

Ko}
|

6.7 Input and Output

LME identifies channels for input and output with non-negative integer
numbers called file descriptors. File descriptors correspond to files,
devices such as serial port, network connections, etc. They are used
as input argument by most functions related to input and output, such
as fprintf for formatted data output or fgets for reading a line of
text.

Note that the description below applies to most LME applications.
For some of them, files, command prompts, or standard input are ir-
relevant or disabled; and standard output does not always correspond
to the screen.

At least four file descriptors are predefined:

Value Input/Output Purpose

0 Input Standard input from keyboard
1 Output Standard output to screen

2 Output Standard error to screen

3 Output Prompt for commands

You can use these file descriptors without calling any opening func-
tion first, and you cannot close them. For instance, to display the value
of i, you can use fprintf:

fprintf (1, 'pi = %.6f\n’, pi);
pi = 3.141593

Some functions use implicitly one of these file descriptors. For in-
stance disp displays a value to file descriptor 1, and warning displays
a warning message to file descriptor 2.

File descriptors for files and devices are obtained with specific func-
tions. For instance fopen is used for reading from or writing to a file.
These functions have as input arguments values which specify what
to open and how (file name, host name on a network, input or output
mode, etc.), and as output argument a file descriptor. Such file de-
scriptors are valid until a call to fclose, which closes the file or the
connection.

56 Sysquake for LaTeX

6.8 Error Messages

When an error occurs, the execution is interrupted and an error mes-
sage explaining what happened is displayed, unless the code is en-
closed in a try/catch block. The whole error message can look like

> use stat
> iqr(123)

Index out of range for variable 'M’' (stat/prctile;61)
-> stat/iqr;69

The first line contains an error message, the location in the source
code where the error occurred, and the name of the function or oper-
ator involved. Here stat is the library name, prctile is the function
name, and 61 is the line number in the file which contains the library.
If the function where the error occurs is called itself by another func-
tion, the whole chain of calls is displayed; here, prctile was called by
iqr atline 69 in library stat.

Here is the list of errors which can occur. For some of them, LME
attempts to solve the problem itself, e.g. by allocating more memory
for the task.

Stack overflow Too complex expression, or too many nested func-
tion calls.

Data stack overflow Too large objects on the stack (in expres-
sions or in nested function calls).

Variable overflow Not enough space to store the contents of a
variable.

Code overflow Not enough memory for compiling the program.

Not enough memory Not enough memory for an operation out-
side the LME core.

Algorithm does not converge A numeric algorithm does not con-
verge to a solution, or does not converge quickly enough. This
usually means that the input arguments have invalid values or are
ill-conditioned.

Incompatible size Size of the arguments of an operator or a func-
tion do not agree together.

Bad size Size of the arguments of a function are invalid.

Non-vector array A row or column vector was expected, but a
more general array was found.

LME Reference 57
Not a column vector A column vector was expected, but a more
general array was found.

Not a row vector A row vector was expected, but a more general
array was found.

Non-matrix array A matrix was expected, but an array with more
than 2 dimensions was found.

Non-square matrix A square matrix was expected, but a rectan-
gular matrix was found.

Index out of range Index negative or larger than the size of the
array.

Wrong type String or complex array instead of real, etc.

Non-integer argument An argument has a fractional part while
an integer is required.

Non positive integer argument An argument is not a positive
integer as expected.

Argument out of range An argument is outside the permitted
range of values.

Non-scalar argument An argument is an array while a scalar
number is required.

Non-object argument An object is required as argument.

Not a permutation The argument is not a permutation of the
integers from 1 to n.

Bad argument A numeric argument has the wrong site or the
wrong value.

Unknown option A string option has an invalid value.
Object too large An object has a size larger than some fixed limit.

Undefined variable Attempt to retrieve the contents of a variable
which has not been defined.

Undefined input argument Attempt to retrieve the contents of
an input argument which was neither provided by the caller nor
defined in the function.

Undefined function Attempt to call a function not defined.

Too few or too many input arguments Less or more arguments
in the call than what the function accepts.

58 Sysquake for LaTeX
Too few or too many output arguments Less or more left-side
variables in an assignment than the function can return.
Syntax error Unspecified compile-time error.

"function" keyword without function name Incomplete func-
tion header.

Bad function header Syntax errorin a function header

Missing expression Statement such as if or while without ex-
pression.

Unexpected expression Statement such as end or else followed
by an expression.

Incomplete expression Additional elements were expected dur-
ing the compilation of an expression, such as right parenthesis or
a sub-expression at the right of an operator.

"for" not followed by a single assignment for is followed by
an expression or an assignment with multiple variables.

Bad variable name The left-hand part of an assignment is not a
valid variable name (e.g. 2=3)

String without right quote The left quote of a string was found,
but the right quote is missing.

Unknown escape character sequence |In a string, the backslash
character is not followed by a valid escape sequence.

Unexpected right parenthesis Right parenthesis which does not
match a left parenthesis.

Unexpected right bracket Right bracket which does not match
a left bracket.

Unrecognized or unexpected token An unexpected character
was found during compilation (such as (1+))

"end" not in an index expression end was used outside of any
index sub-expression in an expression.

"beginning” not in an index expression beginning was used
outside of any index sub-expression in an expression.

"matrixcol" not in an index expression matrixcol was used
outside of any index sub-expression in an expression.

"matrixrow" not in an index expression matrixrow was used
outside of any index sub-expression in an expression.

LME Reference 59

"matrixrow" or "matrixcol' used in the wrong index
matrixrow was used in an index which was not the first one, or
matrixcol was used in an index which was not the only one or
the second one.

Compilation overflow Not enough memory during compilation.

Too many nested subexpressions The number of nested of
subexpressions is too high.

Variable table overflow A single statement attempts to define
too many new variables at once.

Expression too large Not enough memory to compile a large ex-
pression.

Too many nested (), [1 and {} The maximum depth of nested
subexpressions, function argument lists, arrays and lists is
reached.

Too many nested programming constructs Not enough mem-
ory to compile that many nested programming constructs such as
if, while, switch, etc.

Wrong number of input arguments Too few or too many input
arguments for a built-in function during compilation.

Wrong number of output arguments Too few or too many out-
put arguments for a built-in function during compilation.

Too many indices More than two indices for a variable.

Variable not found A variable is referenced, but appears neither
in the arguments of the function nor in the left part of an assign-
ment.

Unbounded language construct if, while, for, switch, or try
without end.

Unexpected "end" The end statement does not match an if,
switch, while, for, or catch block.

"case" or "otherwise" without "switch" The case orotherwise
statement is not inside a switch block.

"catch" without "try" The catch statement does not match a try
block.

"break" or "continue" not in a loop The break or continue
statement is not inside a while or for block.

60 Sysquake for LaTeX
Variable name reused Same variable used twice as input or as
output argument.

Too many user functions Not enough memory for that many user
functions.

Attempt to redefine a function A function with the same name
already exists.

Can’t find function definition Cannot find a function definition
during compilation.

Unexpected end of expression Missing right parenthesis or
square bracket.

Unexpected statement Expression expected, but a statement is
found (e.g. if).

Null name Name without any character (when given as a string in
functions like feval and struct).

Name too long More than 32 characters in a variable or function
name.

Unexpected function header A function header (keyword "func-
tion") has been found in an invalid place, for example in the argu-
ment of eval.

Function header expected A function header was expected but
not found.

Bad variable in the left part of an assignment The left part of
an assighment does not contain a variable, a structure field, a list
element, or the part of an array which can be assigned to.

Bad variable in a for loop The left part of the assignment of a
for loop is not a variable.

Source code not found The source code of a function is not avail-
able.

File not found fopen does not find the file specified.

Bad file ID /O function with a file descriptor which neither is stan-
dard nor corresponds to an open file or device.

Cannot write to file Attempt to write to a read-only file.
Bad seek Seek out of range or attempted on a stream file.
Too many open files Attempt to open too many files.

End of file Attempt to read data past the end of a file.

LME Reference 61

Timeout Inputoroutput did not succeed before a too large amount
of time elapsed.

No more OS memory The operating system cannot allocate more
memory.

Bad context Call of a function when it should not (application-
dependent).

Not supported The featureis not supported, atleastin the current
version.

6.9 Character Set

There exist different standards to represent characters. In LME, char-
acters are stored as 16-bit unsigned integer numbers. The mapping
between these codes and the actual characters they represent de-
pends on the application and the operating system. Currently, on ma-
cOS, Windows and Linux, Sysquake uses the UTF-16 character encod-
ing (i.e. Unicode characters encoded in one or two 16-bit words).

To make the exchange of files possible without manual conversion,
all text files used by LME applications can have their character set
specified explicitly. In Sysquake, this includes library files (.Iml), SQ
files (.sq), and SQ data files (.sqd). Versions of Sysquake using Unicode
(currently macOS and Linux) convert automatically files with a charset
specification.

The character set specification is a comment line with the following
format:

// charset=charsetname

or

% charset=charsetname

Spaces between the comment mark and the keyword charset are
ignored. The comment line must be the first or the second line of the
text file. The character set charsetname must be one of the following:

ascii orusascii ASCII

utf-8 orutf8 UTF-8 (unicode)
1s0-8859-1or iso-latin-1 1SO-Latin-1 (Windows 1252)
macintosh or macosroman Mac OS Classic

Here are advices about the use of character set specifications, both
for the current transition phase where Sysquake for Windows does not
use Unicode and for the future.

If you need only ASCII (typically because you work in English, or for
files without text or where unaccented letters are acceptable), do not
add any character set specification (ASCII is a subset of all supported

62 Sysquake for LaTeX

character sets) or add charset=ascii as an indication that the file
should contain only 7-bit characters.

If you need accented characters found in western European lan-
guages, use 1S0O-8859-1 with an explicit character set specification on
Windows and other platforms if you need cross-platform compatibility,
or any character set with a character set specification otherwise.

If you need another native character set on Windows, do not add
any character set specification, and switch to UTF-8 as soon as a uni-
code version of Sysquake becomes available.

6.10 Formatted text

Like most text-based programming languages, LME primary text for-
mat is plain text, without any character or paragraph formatting. To
improve readability, it also supports formatted text. Formatting in-
formation used to change the character font and size and how para-
graphs are aligned is embedded in the text itself as markup, i.e. spe-
cial sequences of characters unlikely to occur in normal text. This is
similar to HTML or LaTeX, but with a simpler syntax similar to what is
used in wikis and blogs. The markup which has been chosen for LME
is Creole, a collaborative effort to create a common markup language
to be used across different wikis, and more precisely the open-source
NME implementation.

Formatted text output channel

In addition to the standard output channel (file descriptor 1) and the
standard error channel (file descriptor 2), LME has a special channel
for formatted output (file descriptor 4). Anything written to that chan-
nel is parsed so that markup constructs are interpreted; the result is
displayed in the command window. Each write command should con-
tain a whole block of text with markup; there is no buffering across
output commands.

Not all versions of LME support formatted output, and how format-
ted output is displayed depends on the application and the platform.
For instance, in shell applications, word-wrap is applied to paragraphs,
but bold or italic text is rendered as plain text.

Example

T = 27.3;
fprintf(4, ’'=Report=\nTemperature is %.1f\n’, T);

LME Reference 63

The same markup is used in LME applications at other places. For
example, in Sysquake, the version and help information can contain
markup.

Markup reference

Text with markup is plain text with a few character sequences which
are recognized by the markup processor and change the format of the
result. The result is styled text with titles, paragraphs with justifica-
tion, bold and italic faces, etc.

There are two kinds of markup constructs: blocks and inline. Blocks
are paragraphs (indented or not), headings, list items, table cells,
horizontal rules and block extensions. Inline constructs are charac-
ter styles, verbatim text and links; they are part of blocks. Except in
preformatted blocks, sequences of spaces or tabs are replaced with
single spaces.

Paragraphs

Paragraphs are made of lines whose first character is not one of *#: ;=
nor sequence {{{, ---, or <<<. Lines can begin with sequences *x
and ##.

Paragraphs end with blank lines or next heading, list, table, in-
dented paragraph, preformatted block of text, horizontal rule or block
extension. They can contain styled text, links, spans of verbatim text,
and inline extensions.

Example

This is a paragraph
written in two lines.

This is another paragraph.

Indenting

Indented paragraphs are paragraphs which begin with a colon. Mul-
tiple colons define the level of indenting. Indented paragraphs can
contain styled text, links, spans of verbatim text, and inline exten-
sions.

Example

This is a normal paragraph.
:This is an indented

64 Sysquake for LaTeX

paragraph in two lines.
::This is more indented.

Headings

Headings are made of a single line beginning with an equal character.
The number of equal characters defines the level of title, from main
title (=) to sub-sub-subtitle (====). Headings may end with a sequence
of equal characters.

Examples

=Level 1 heading=

Paragraph

=Another level 1 heading, without trailing equal character
==Level 2 heading==

===Level 3 heading===

Lists

Lists are collections of items. There are three kinds of lists: unnum-
bered lists, numbered lists, and definition lists. Lists can be nested;
they end with the next heading, indented paragraph, table, or blank
line.

Unnumbered lists are represented as indented paragraphs with a
bullet. Each item begins with a star character (x); it can span multiple
lines.

Numbered lists are represented as indented paragraphs with a
number. ltems are numbered automatically with consecutive integers
starting at 1. Each item begins with a sharp character (#); it can span
multiple lines.

Definition lists are made of two kinds of items: title, typically dis-
played in bold font, and definition, typically displayed indented. Titles
begin with a semicolon at the beginning of a line. Definitions either
follow the title, separated with a colon; or they begin on a new line
beginning with a colon.

List nesting can combine different kinds of lists. Sublist items begin
with multiple markers, the first one(s) corresponding to the enclosing
list(s). For instance, items of an unnumbered list nested in a num-
bered list should start with #x at the beginning of the line, without any
preceding space. List markers must be used in a consistent way; for
example, ## at the beginning of a line in an unnumbered list is not
interpreted as a second-level numbered list item, but as monospace
style (see below).

LME Reference 65

Examples

* First item of unnumbered list.

* Second

item, in two lines.

*Third item without space (spaces are optional).

First item of numbered list.

Second item.

#x First item on unnumbered sublist.

#x Second item.

Thirst item of top-level numbered list.

; First title of definition list
: Definition of first item.
; Second title: Second definition
beginning on the same line.

Paragraph separated with a blank line.

Tables

Tables are rectangular array of cells. They are made of one line per
row. Each cell begins with character |. Heading cells (typically dis-
played in bold face) begin with |=. Rows may end with a trailing |.

Example

In the table below, the first row and the first column contain headings.
The very first cell is empty.

|[|[=First column|=Second column
|=First row|Cell 1,1|Cell 1,2
[=Second row|Cell 2,1|Cell 2,2

Preformatted

Preformatted text is a block of text displayed literally, including line
feeds. Preformatted text is preceded with a line containing {{{ and is
followed by a line containing }}}.

Example
This is some C code:
{{{
double f(double x)
{

return 2 * x; // f(x) = 2x

66 Sysquake for LaTeX

}
1

In preformatted text, lines which begin with }}}, with leading spaces
or not, must have an additional space which is discarded in the output.

Horizontal rules

Horizontal rules are single lines containing four hyphens.

Example

Paragraph.

Paragraph following a horizontal rule.

Extensions

Sequences << and <<< are reserved for extensions.

Character style

Inside paragraphs, indented paragraphs, headings, list elements, and
table cells, the following two-character sequences toggle on or off the
corresponding style. It is not mandatory to nest spans of styled char-
acters between matching style sequences. Style is reset at the end of
text block.

Markup Style

*% Bold

// Italic

Monospace
» (two commas) Subscript

An

Superscript
__ (two underscores) Underlined

Double stars and double sharps are interpreted as the beginning of
list items when they are the first characters of a line in the context of
lists. To be interpreted as style markup, they can be preceded by a
space.

Example

This is //italic text//, =*xbold textx*x,
and //xxbold italic textxx//.

LME Reference 67

Escape character

The tilde character, when followed by any character except space, tab
or line feed, is an escape character; it is not displayed and the next
character loses its special meaning, if any.

Example

Two stars: "« or "xx or *xx; tilde:

is rendered as "Two stars: ** or ** or **; tilde: "."

Verbatim

Verbatim text is a sequence of characters enclosed between {{{ and
}13}. After {{{, all characters are output verbatim, without any markup
interpreting, until the next }}} or the end of text block. Multiple spaces
and tabs and single line feeds are still converted to single spaces,
though. Verbatim text is an alternative to the escape character; it is
more convenient for sequences of characters.

Example
{{{ex3 3 7/7{{{{{{xx3}}}}}//

is rendered as "** {{{xx}}}".

Line break

Except in preformatted blocks, line breaks are not preserved. The
sequence \\ forces a line break.

Example

The next line of this paragraph begins...\\here!

Links

Hypertext links (URLs) are enclosed between [[and]]. The text dis-
played as the link is either the same as the URL itself if there is no |
character, or it is what follows |. No markup is recognized in the URL
part; what follows | can contain styled text and verbatim text. Spaces
surrounding | are ignored.

68 Sysquake for LaTeX

Examples

* Simple link: [[https://calerga.com]]
* Link with link text: [[https://calerga.com | Calerga]]
* Link with styled link text: [[https://calerga.com | *xCalergaxx]]

6.11 List of Commands, Functions, and
Operators

Programming keywords

break for rethroﬂ
[case [function return
catch [gToba

clear hideimplementation|

continue [1T

[define otherwise

endfunction| persistent|

lelse private

elseif public

lerror repeat

Programming operators and functions

assert fun2stn sandbox

ariable assignment| 1nling| sandboxtrust]|
[Operator () 1sdefined| str2tun
1stun| str2obj
1sglobal subsasgn|
Lasterr] subsref]|
lasterror] varargin|
namedargin| varargout|

[nargin
nargout

LME Reference
Platform
exist| iskeyword| lookfor|
help 1smac variables
info 1spc| wﬁlcm
1nmenm 1sunix|
Arrays
[] inthist| permutd
, 1permute| rand|
; 1sempty randi
: TEFﬁTHJ randn
arrayfun Llinspace repmat|
beginning| Logspace reshape|
cat mag1ic| rng
1ag matrixcol rot9o
end matrixrow size
eye meshgrid| sort
find squeeze
1pdim sub21ind
Tlipln unique
Tlipud unwrap
1nd25u| zeros|
Strings
base32decode latex2mathml| strfind
base32encode Length| strmatch|
baseb4decode Lower]| strrep
basebdencode mathml| strtok
char mathmlpoly| strtrim
eblan setstr unicodeclass|
1schar split upper]
1sdigit sprintf utf32decode
1sempty sscanft utf32encode
1sletter strcmp utf8decode
zggﬁgggj strcmpi utfdencode

69

Sysquake for LaTeX

70

Hash
hmac shal
mab5 shal

Lists
{} islist num2list
apply Length replist
join| List2num|
1semptyl| map|

Cell arrays

celU iscelu

cellfun| num2cell|

Structures and structure arrays

Null value

[isnull] (null|

cell2struct]| isstruct| struct2cell
orderfields| structarray
rmfield structmerge
settield
struct

LME Reference

Objects
class| isobject|
inferiorto| methods|
153 superclasses|

Logical operators

Logical fun

ctions

Bitwise functions

bitall bitget|
bitand bitor|
bitany| bitset
bitcmp BTTEF%?ﬂ

all isfinite isprime
any TETT35ﬂJ 1srow
false 1s1inf] 1sscalar]
in 1sinteger| 1sspace|
1schar] 1sletter] 1svector|
1scoLumn| 1slogical| logical
1sd1git ismatrix true
1sempty 1snan| XOr
1sequal isnumeric|

1graycode

72

Integer functions

int8| int64| uintl6
1nt16 map21int| uint32
int32 uintg| uinto4

Set functions

intersect
1smember

setdiff
setxor

union
unique

Constants
eps inf pi]
alse 1ntmax realmax
intmax intmin realmin
truq

Arithmetic

goldenratio]
1 nan

functions

cump rod| rem

cumsum| sum

Sysquake for LaTeX

LME Reference

Trigonometric functions in radians

acos atan| sec
acot atan?| sin
acsc CcoS tan
asec cot
asin csc

Trigonometric functions in degrees

acosd atand| secd
acotd atan2d| sind
acscd cosd tand
asecd cotd
asind cscd

Hyperbolic functions

acosh asinh csch
acoth atanh sech
acsch cosh sinh
asech coth tanh

74

Other scalar math functions

abs erfcinv

angle erfcx

eta erfiny

betainc| exp|

petaln| expml

conj actor

diln actorial

el lipam| gamma| real|
ellipe gammainc| reallog
ellipt gamma Lnf realpow
ellip] gcd realsqrt|
e LUipke] ﬁ?ﬁ%ﬂ sign
erf 1imag sinc
erfc cm sqrt

Type conversion functions

cast fix single
cell tloon swapbytes
comp Lex| round typecast|
double] roundn|

Matrix math functions

’ fft null
! Tunm orth
alance hess pinv
care householder] qn
chol householderapply| rank
cond 1TTt schur
conv?2| TFWJ sqrm
dare Linprog svd
et [ogm| trace
dlyap| Lu| tril
elg yap triu
expm norm

Sysquake for LaTeX

LME Reference 75

Geometry functions

cart2pol
cart2sph

Cross|
dot]|

pol2cart
sph2cart

Probability distribution functions

cdf

| pdf
1cdf

[random

Statistic functions

cov] max moment
cummax [mean [skewness
cummin median| std
Kurtosis| min| var

Polynomial math functions

addpol| filter| polyint
conv| poLy| polyval
decony| polyder| roots|

Interpolation and triangulation functions

delaunay interpl
delaunayn| interpn
griddata tsearch
[griddatan tsearchn|

voronoi
voronolin

76 Sysquake for LaTeX

Quaternion operators

CEL T
1]

Quaternion math functions

abs
conj
CoS
cumsum|
ditf]
exp!
Log

mean|

Other quaternion functions

beginning| fliplr

cat| Tlipud

char ipermute

disp Tsempty]

dumpvar| 1squaternion| Size|

double Length| squeeze

en ndims subsasgn
1pdim nume L subsre

LME Reference 77

Non-linear numerical functions

fminbnd| integral] ode45|

tfminsearch| lsqcurvefit| |odeset]

tsolve Lsgnonlin optlmseq
zero ode

Dynamical systems functions

c2dm margin| [zp2ss|

d2cm SS2tT

dmargin| tf2ss

Input/output

format| redirect|
fprintf sprintf]
Tread| sread|
Trewind| sscanf
Tscanf] swrite
Tseek warnlnq

ftgets Ttell

Tionread| Twrite|

Files

Path manipulation

[fileparts| [filesep| [fullfile

78 Sysquake for LaTeX
XML

getElementById saxne xmlreadstring|
getkElementsByTagName saxnext xmlrelease|

saxcurrentline| saxrelease
saxcurrentpos| xmlrea

Basic graphics

activeregion| fplot
1image
Label
Legend|
line subplotstyle|
math text
pcolor t1chormaﬂ
plot t1cks
plotoption title
fontset plotset|

Graphics for dynamical systems

bodemag dsigmal nichols
bodephase] dstep| nyquist
dbodemag erlocus| plotroots|
HBEHEBFE%& hgrid rtocus|
dimpulse hstep sgrid
dinitial impulse sigma
dlsim| initial step|
dnichols Lsim zgrlq
dnyquist ngrid

Data compression

[deflate| [inflate

LME Reference — variables

Image input/output

[imageread|

[imageset| [imagewrite|

Date and time

cal2julian| julian2cal| tic

clock posixtime| toc
Unix

cd| getenv] [sleep

cputime| pwd| unix

Sysquake Remote

beginfigure| htmlspecialchars| urldecode
endtigure| http| urlencode
figurelist httpheader

getclick httpvars

79

6.12 Variable Assignment and Subscript-

ing

Variable assignment

Assignment to a variable or to some elements of a matrix variable.

Syntax

var = expr
(varl, var2,

..) = function(...)

80 Sysquake for LaTeX

Description

var = expr assigns the result of the expression expr to the variable
var. When the expression is a naked function call, (varl,var2,...)
= function(...) assigns the value of the output arguments of the
function to the different variables. Usually, providing less variables
than the function can provide just discards the superfluous output
arguments; however, the function can also choose to perform in a
different way (an example of such a function is which returns
the number of rows and the number of columns of a matrix either as
two numbers if there are two output arguments, or as a 1-by-2 vector
if there is a single output argument). Providing more variables than
what the function can provide is an error.

Variables can store any kind of contents dynamically: the size and
type can change from assignment to assignment.

A subpart of a matrix variable can be replaced with the use of
[parenthesis| In this case, the size of the variable is expanded when
required; padding elements are 0 for numeric arrays and empty ar-
rays [] for cell arrays and lists.

See also

[Operator ()] [operator {} [cTear [exist] [for] [subsasgn

beginning

First index of an array.

Syntax

v(...beginning...)
A(...beginning...)
function e = C::beginning(obj, i, n)

Description

In an expression used as an index to access some elements of an
array, beginning gives the index of the first element (line or column,
depending of the context). It is always 1 for native arrays.

beginning can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::beginning(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where beginning is used, and n is the total number of index
expressions.

LME Reference — variables 81

See also

[Operator ()] [operator {}| [beginning| [end} matrixcol] [matrixrow|

end

Last index of an array.

Syntax

v(...end...
A(...end...
function e

I ~ ~—

C::end(obj, i, n)

Description

In an expression used as an index to access some elements of an ar-
ray, end gives the index of the last element (line or column, depending
of the context).

end can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::end(obj,i,n), where C is the name of the class, obj is the
object to be indexed, i is the position of the index expression where
end is used, n is the total number of index expressions.

Examples
Last 2 elements of a vector:

a = ; a(end-1:end)

1:5

45

Assignment to the last element of a vector:
a(end) = 99

a =
1234299

Extension of a vector:
a(end + 1) = 100

a =
123499 100

See also

Operator ()| |operator {}]| [size| |Llength] [beginning| [matrixcol]
matrixrow

82 Sysquake for LaTeX

global persistent

Declaration of global or persistent variables.

Syntax

global x y ...
persistent x y ...

Description

By default, all variables are local and created the first time they are
assigned to. Local variables can be accessed only from the body of the
function where they are defined, but not by any other function, even
the ones they call. They are deleted when the function exits. If the
function is called recursively (i.e. if it calls itself, directly or indirectly),
distinct variables are defined for each call. Similarly, local variables
defined in the workspace using the command-line interface cannot be
referred to in functions.

On the other hand, global variables can be accessed by multiple
functions and continue to exist even after the function which cre-
ated them exits. Global variables must be declared with global in
each function which uses them. They can also be declared in the
workspace. There exists only a single variable for each different name.

Declaring a global variable has the following result:

- If a previous local variable with the same name exists, it is
deleted.

- If the global variable does not exist, it is created and initialized
with the empty array [].

- Every access which follows the declaration in the same function
or workspace uses the global variable.

Like global variables, persistent variables are preserved between func-
tion calls; but they cannot be shared between different functions. They
are declared with persistent. They cannot be declared outside a
function. Different persistent variables can have the same name in
different functions.

Examples

Functions to reset and increment a counter:

LME Reference — variables 83

function reset
global counter;
counter = 0;

function value = increment
global counter;
counter = counter + 1;
value = counter;

Here is how the counter can be used:

reset;
i = increment
i=
1
j = increment

matrixcol

First index in a subscript expression.

Syntax

A(...matrixcol...)
function e = C::matrixcol(obj, i, n)

Description

In an expression used as a single subscript to access some elements
of an array A(expr), matrixcol gives an array of the same size as
A where each element is the column index. For instance for a 2-by-3
matrix, matrixcol gives the 2-by-3 matrix [1,2,3;1,2,3].

In an expression used as the second of multiple subscripts to
access some elements of an array A(...,expr) orA(...,expr,...),
matrixcol gives a row vector of length size(A,2) whose elements
are the indices of each column. It is equivalent to the range
(beginning:end).

matrixcol is useful in boolean expressions to select some ele-
ments of an array.

matrixcol can be overloaded for objects of used-defined
classes. Its definition should have a header equivalent to function

84 Sysquake for LaTeX

e=C::matrixcol(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixcol is used, and n is the total number of index
expressions.

Example

Set to 0 the NaN values which are not in the first column:

A = [1, nan, 5; nan, 7, 2; 3, 1, 21;
A(matrixcol > 1 & isnan(A)) = 0

A =
1 0 5
nan 7 2
3 1 2
See also

matrixrow, [beginning [end|

matrixrow

First index in a subscript expression.

Syntax

A(...matrixrow...)
function e = C::matrixrow(obj, i, n)

Description

In an expression used as a single subscript to access some elements
of an array A(expr), matrixrow gives an array of the same size as A
where each element is the row index. For instance for a 2-by-3 matrix,
matrixrow gives the 2-by-3 matrix [1,1,1;2,2,2].

In an expression used as the first of multiple subscripts to access
some elements of an array A(expr,...), matrixrow gives a row vec-
tor of length size(A, 1) whose elements are the indices of each row.
It is equivalent to the range (beginning:end).

matrixrow is useful in boolean expressions to select some ele-
ments of an array.

matrixrow can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::matrixrow(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixrow is used, and n is the total number of index
expressions.

LME Reference — variables 85

See also

matrixcol] [beginning |end|

subsasgn

Assignment to a part of an array, list, or structure.

Syntax

A = subsasgn(A, s, B)

Description

When an assignment is made to a subscripted part of an object in a
statement like A(sl,s2,...)=B, LME executes A=subsasgn(A,s,B),
where subsasgn is a method of the class of variable A and s is a struc-
ture with two fields: s.type whichis ’'()’, and s.subs which is the
list of subscripts {s1,s2,...}. If a subscript is the colon character
which stands for all elements along the corresponding dimensions, it
is represented with the string ':’ in s.subs.

When an assignment is made to a subscripted part of an object
in a statement like A{s}=B, LME executes A=subsasgn(A,s,B), where
subsasgn is a method of the class of variable A and s is a structure
with two fields: s.type which is "{}’, and s.subs which is the list
containing the single subscript {s}.

When an assignment is made to the field of an object in a statement
like A. f=B, LME executes A=subsasgn(A,s,B), where s is a structure
with two fields: s.type whichis ’'.’, and s.subs which is the name of
the field (' ' in this case).

While the primary purpose of subsasgn is to permit the use of sub-
scripts with objects, a built-in implementation of subsasgn is provided
for arrays when s.type is ' ()’, for lists and cell arrays when s.type
is a list or a cell array, and for structures when s.typeis '.’. In that
case, the second argument s can be reduced to the list of subscripts
or the field name; and a single subscripts can be given directly instead
of a list of length 1.

Examples

A=1[1,2;3,4];
subsasgn(A, {type='()',subs={1,’:'}}, 999)
999 999
3 4
subsasgn(A, {type='()',subs={":",1}}, [1])

86 Sysquake for LaTeX

2
4

Same result when the indices are given directly as the second argu-
ment:

subsasgn(A, {1,':'}, 999)
999 999
3 4
s = {a=2, b=1:5};
subsasgn(s, 'b’', 'abc')
a: 2
b: "abc’

See also

[Operator ()| joperator {}| [subsref| [beginning| |end|

subsref

Reference to a part of an array, list, or structure.

Syntax
B = subsref(A, s)

Description

When an object variable is subscripted in an expression like
A(sl,s2,...), LME evaluates subsref(A,s), where subsref is a
method of the class of variable A and s is a structure with two fields:
s.type which is '()’, and s.subs which is the list of subscripts
{sl1,s2,...}. If a subscript is the colon character which stands for all
elements along the corresponding dimensions, it is represented with
the string ":’ in s.subs.

When an object variable is subscripted in an expression like A{s},
LME evaluates subsref(A,s), where subsref is a method of the class
of variable A and s is a structure with two fields: s.type whichis '{}’,
and s.subs which is the list containing the single subscript {s}.

When the field of an object variable is retrieved in an expression
like A.f, LME executes subsref(A,s), where s is a structure with two
fields: s.type whichis '.’, and s.subs which is the name of the field
("’ in this case).

While the primary purpose of subsref is to permit the use of sub-
scripts with objects, a built-in implementation of subsref is provided
for arrays when s.typeis ' ()’, for lists when s.typeis '{}’, and for

LME Reference — programming constructs 87
structures when s.typeis '.’. In that case, the second argument s
can be reduced to the list of subscripts or the field name; and a single
subscripts can be given directly instead of a list of length 1.

Examples

A=11,2;3,4];
subsref (A, {type='()"',subs={1,':"}})
12

Same result when the indices are given directly as the second argu-
ment:

subsref (A, {1,':'})
12

s = {a="abc’, b=1:5};

subsref(s, 'b’)
12345

See also

[Operator ()| [operator {}| [subsasgn| [beginning] [end|

6.13 Programming Constructs

Programming constructs are the backbone of any LME program. Ex-
cept for the variable assignment, all of them use reserved keywords
which may not be used to name variables or functions. In addition to
the constructs described below, the following keywords are reserved
for future use:

classdef parfor
goto spmd
break

Terminate loop immediately.

Syntax

break

88 Sysquake for LaTeX

Description

When a break statement is executed in the scope of a loop construct
(while, repeat or for), the loop is terminated. Execution continues
at the statement which follows end. Only the innermost loop where
break is located is terminated.

The loop must be in the same function as break. It is an error to
execute break outside any loop.

See also

while] [repeat) [for] [continue| [return|

case

Conditional execution of statements depending on a number or a
string.

See also

[switch| [otherwise]

catch

Error recovery.

See also

continue

Continue loop from beginning.

Syntax

continue

Description

When a continue statement is executed in the scope of a loop con-
struct (while, repeat or for), statements following continue are ig-
nored and a new loop is performed if the loop termination criterion is
not fulfilled.

LME Reference — programming constructs 89

The loop must be in the same function as continue. It is an error
to execute continue outside any loop.

See also

while) [repeat|[for] [break|

define

Definition of a constant.

Syntax
define c = expr
define c = expr;

Description

define c=expr assign permanently expression expr to c. It is equiv-
alent to

function y = ¢
y = expr;

Since ¢ does not have any input argument, the expression is usually
constant. A semicolon may follow the definition, but it does not have
any effect. define must be the first element of the line (spaces and
comments are skipped).

Examples
define e = exp(1);
define g = 9.81;
define c = 299792458;
define G = 6.672659%e-11;
See also
[functionl
for

Loop controlled by a variable which takes successively the value of the
elements of a vector or a list.

90

Syntax

for v = vect
sl

end

for v = list
sl

end

Description

Sysquake for LaTeX

The statements between the for statement and the corresponding
end are executed repeatedly with the control variable v taking succes-
sively every column of vect or every element of list list. Typically,
vect is a row vector defined with the|range operaton

You can change the value of the control variable in the loop; how-
ever, next time the loop is repeated, that value is discarded and the

next column of vect is fetched.

Examples

= 1:3;

-
o
S

-

'_l.
ORI F Ul FEFWNRIFWIHLNIIT I e

for

[

for
i

for
i

for
el =
1
el =
abc
el =
{2,5}

i,

Il
—
=
w
~

end

1:2:5; end; i

1:3; break; end;

i

1 = {1,’abc’,{2,5}}; el, end

LME Reference — programming constructs 91

See also

whilel [repeat] |breakl [continue] [variable assignment

]function endfunction \

Definition of a function, operator, or method.

Syntax

function f
statements

function f(x1, x2, ...)
statements

function f(x1, x2 = expr2, ...)
statements

function y = f(x1, x2, ...)
statements

function (yl,y2,...) = f(x1,x2,...)
statements

function ... class::method ...
statements

function ...
statements
endfunction

Description

New functions can be written to extend the capabilities of LME. They
begin with a line containing the keyword function, followed by the
list of output arguments (if any), the function name, and the list of
input arguments between parenthesis (if any). The output arguments
must be enclosed between parenthesis or square brackets if they are
several. One or more variable can be shared in the list of input and
output arguments. When the execution of the function terminates (ei-
ther after the last statement or because of the command[return), the
current value of the output arguments, as set by the function’s state-
ments, is given back to the caller. All variables used in the function’s
statements are local; their value is undefined before the first assign-
ment (and it is illegal to use them in an expression), and is not shared
with variables in other functions or with recursive calls of the same

92 Sysquake for LaTeX

function. Different kinds of variables can be declared explicitly with
global and persistent.

When multiple functions are defined in the same code source (for
instance in a library), the body of a function spans from its header
to the next function or until the endfunction keyword, whichever
comes first. Function definitions cannot be nested. endfunction is
required only when the function definition is followed by code to be
executed outside the scope of any function. This includes mixed code
and function definitions entered in one large entry in a command-
line interface, or applications where code is mainly provided as state-
ments, but where function definitions can help and separate libraries
are not wished (note that libraries cannot contain code outside func-
tion definitions; they do not require endfunction). Both function
and endfunction appear usually at the beginning of a line, but are
also permitted after a semicolon or a comma.

Variable number of arguments

Not all of the input and output arguments are necessarily specified
by the caller. The caller fixes the number of input and output argu-
ments, which can be obtained by the called function with [narginand
respectively. Unspecified input arguments (from nargin+1
to the last one) are undefined, unless a default value is provided in
the function definition: with the definition function f(x,y=2),yis?2
when f is called with a single input argument. Unused output argu-
ments (from nargout+1 to the last one) do not have to be set, but may
be.

Functions which accept an unspecified number of input and/or out-
put arguments can use the special variables varargin and varargout,
which are lists of values corresponding to remaining input and output
arguments, respectively.

Named arguments

The caller can pass some or all of the input arguments by name, such
as f(x=2). Named arguments must follow unnamed ones. Their or-
der does not have to match the order of the input arguments in the
function declaration, and some arguments can be missing. Missing
arguments are set to their default value if it exists, or left undefined.
Undefined arguments can be detected with isdefined, or the error
caused by their use caught by try.

Functions which accept unspecified named arguments or which do
not want to expose the argument names used in their implementation
can use the special variable namedargin, which is a structure contain-
ing all named arguments passed by the caller.

LME Reference — programming constructs 93

Unused arguments

Character " stands for an unused argument. It can be used as a place-
holder for an input argument name in the function definition, or in the
list of output arguments specified for the function call.

If function f is defined with function header function f(x,”), itac-
cepts two input arguments, the first one assigned to x and the second
one discarded. This can be useful if f is called by code which expects
a function with two input arguments.

In (a,”, c)=T, function f is called to provide three output arguments
(nargout==3), but the second output argument is discarded.

Operator overloading

To redefine an operator (which is especially useful for object methods;
see below), use the equivalent function, such as plus for operator +.
The complete list is given in the about operators.

To define a method which is executed when one of the input argu-
ments is an object of class class (or a child in the classes hierarchy),
add class:: before the method (function) name. To call it, use only
the method name, not the class name.

Examples

Function with optional input and output arguments:

function (Sum, Prod) = calcSumAndProd(x, y)

if nargout ==
return; % nothing to be computed
end
if nargin == % make something to be computed...
X = 0;
end
if nargin <=1 % sum of elements of x
Sum = sum(Xx);
else % sum of x and y
Sum = X + vy;
end
if nargout == 2 % also compute the product
if nargin == % product of elements of x
Prod = prod(x);
else % product of x and y
Prod = x .*x vy;
end
end

Two equivalent definitions:

94 Sysquake for LaTeX

function S = area(a, b = a, ellipse = false)
S=ellipse ? pi xa*xb / 4 : a * b;

function S = area(a, b, ellipse)
if “isdefined(b)
b =a;
end
if "isdefined(ellipse)
ellipse = false;
end
S =-ellipse ? pi xax*xb /4 : axb;

With unnamed arguments only, area can be called with values for a
only, a and b, or a, b and ellipse. By naming ellipse, the second
argument can be omitted:

S area(2, ellipse=true)

wn

3.1416

Function max can return the index of the maximum value in a vector.
In the following call, the maximum itself is discarded.

(", maxIndex) = max([2,7,3,5])
maxIndex =
2

See also

return, [nargin|] |nargout| [isdefined| |varargin| [varargout]
namedargin| [define| [1nling| |global] [persistent]

Q]

hideimplementation

Hide the implementation of remaining functions in a library.

Syntax

hideimplementation

Description

In a library, functions which are defined after the hideimplementation
keyword have their implementation hidden: for errors occuring when
they are executed, the error message is the same as if the function
was a native function (it does not contain information about the er-
ror location in the function or subfunctions), and during debugging,
dbstep in steps over the function call.

hideimplementation may not be placed in the same line of source
code as any other command (comments are possible, though).

LME Reference — programming constructs 95

See also

[public| [private] [function||use|[error][dbstep]|

if elseif else end |

Conditional execution depending on the value of one or more boolean
expressions.

Syntax

if expr
sl

end

if expr
sl

else
s2

end

if exprl
sl

elseif expr2
s2

else
s3

end

Description

If the expression following if is true (nonempty and all elements dif-
ferent from 0 and false), the statements which follow are executed.
Otherwise, the expressions following elseif are evaluated, until one
of them is true. If all expressions are false, the statements following
else are executed. Both elseif and else are optional.

Example

if x > 2
disp(’'large’);
elseif x > 1

96 Sysquake for LaTeX

disp(’'medium’);
else

disp(’small’);
end

See also

[switch| while]

include

Include libraries.

Syntax

include lib

Description

include 1lib inserts the contents of the library file 1ib. Its effect is
similar to the use statement, except that the functions and constants
in Lib are defined in the same context as the library where include
is located. Its main purpose is to permit to define large libraries in
multiple files in a transparent way for the user. include statements
must not follow other statements on the same line, and can reference
only one library which is searched at the same locations as use. They
can be used only in libraries.

Since LME replaces include with the contents of 1ib, one should
be cautious about the public or private context which is preserved
between the libraries. It is possible to include a fragment of function
without a function header.

See also

[use] [includeifexists| [private] [public|

includeifexists

Include library if it exists.

Syntax

includeifexists lib

LME Reference — programming constructs 97

Description

includeifexists lib inserts the contents of the library file 1ib if it
exists; if the library does not exists, it does nothing.

See also

[Lnclude| juseifexists| [privatel public|

otherwise

Conditional execution of statements depending on a number or a
string.

See also

[switch] [case]

private

Mark the beginning of a sequence of private function definitions in a
library.

Syntax

private

Description

In a library, functions which are defined after the private keyword are
private. private may not be placed in the same line of source code
as any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default.

Example

Here is a library for computing the roots of a second-order polynomial.
Only function roots2 can be called from the outside of the library.

private

function d = discr(a, b, ¢)
d=Db2 -4 x%xax*xc;

public

98 Sysquake for LaTeX

function r = roots2(p)

a =p(l);

b =p(2);

c = p(3);

d = discr(a, b, c);

r = [-b+tsqrt(d); -b-sqrt(d)] / (2 *x a);
See also

[public] [function||use]

public

Mark the beginning of a sequence of public function definitions in a
library.

Syntax
public

Description

In a library, functions which are defined after the public keyword are
public. public may not be placed in the same line of source code as
any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default: the public keyword
is not required at the beginning of the library.

See also

[privatel [function| |use]

repeat

Loop controlled by a boolean expression.

Syntax

repeat
sl

until expr

LME Reference — programming constructs 99

Description

The statements between the repeat statement and the corresponding
until are executed repeatedly (at least once) until the expression of
the until statement yields true (nonempty and all elements different
from 0 and false).

Example

v =1[1;
repeat
v = [v, sum(v)+1];
until v(end) > 100;
Y
1 2 4 8 16 32 64 128

See also

while] [for] [breakl [continue]

return

Early return from a function.

Syntax

return

Description

return stops the execution of the current function and returns to the
calling function. The current value of the output arguments, if any,
is returned. return can be used in any control structure, such as[if]

orftry} or at the top level.

Example

function dispFactTable(n)
% display the table of factorials from 1 to n

if n ==
return; % nothing to display
end
fwrite(’ i i!'\n’);
for i = 1:n
fwrite(’'%2d %3d\n’, i, prod(l:i));

end

100 Sysquake for LaTeX

See also

switch

Conditional execution of statements depending on a number or a
string.

Syntax

switch expr
case el
sl

case [e2,e3,...]
s23

case {e4,e5,...}
s45

otherwise
o)

end

switch string
case strl
sl

case str2
s2

case {str3,str4,...}
s34

otherwise
S0

end

Description

The expression of the switch statement is evaluated. If it yields a
number, it is compared successively to the result of the expressions of
the case statements, until it matches one; then the statements which
follow the case are executed until the next case, otherwise or end.
If the case expression yields a vector or a list, a match occurs if the

LME Reference — programming constructs 101

switch expression is equal to any of the elements of the case expres-
sion. If no match is found, but otherwise is present, the statements
following otherwise are executed. If the switch expression yields a
string, a match occurs only in case of equality with a case string ex-
pression or any element of a case list expression.

Example

switch option
case 'arithmetic’
m = mean(data);
case 'geometric’
m = prod(data)”(1l/length(data));
otherwise
error(’unknown option’);
end

See also

[case€] [otherwise)

try

Error recovery.

Syntax
try

enél.
try
catch
enél.
try
catch e
enél.

Description

The statements after try are executed. If an error occurs, execution
is switched to the statements following catch, if any, or to the state-

102 Sysquake for LaTeX

ments following end. If catch is followed by a variable name, a struc-
ture describing the error (the result of lasterror) is assigned to this
variable; otherwise, the error message can be retrieved with lasterr
or lasterror. If no error occurs, the statements between try and end
are ignored.

try ignores two errors:

- the interrupt key (Control-Break on Windows, Command-. on ma-
cOS, Control-C on other operating systems with a keyboard, time-
out in Sysquake Remote);

- an attempt to execute an untrusted function in a sandbox. The
error can be handled only outside the sandbox.

Examples

a=1;
a(2), 555
Index out of range ’'a’
try, a(2), end, 555
555
try, a(2), catch, 333, end, 555
333
555
try, a, catch, 333, end, 555
a

U=l

55

See also

[Lasternr, [lasterror|error]

until

End of repeat/until loop.

See also

use

Import libraries.

LME Reference — programming constructs 103

Syntax

use lib
use libl, 1ib2,

Description

Functions can be defined in separate files, called libraries. use makes
them available in the current context, so that they can be called by
the functions or statements which follow. Using a library does not
make available functions defined in its sublibraries; however, libraries
can be used multiple times, in each context where their functions are
referenced.

All use statements are parsed before execution begins. They can be
placed anywhere in the code, typically before the first function. They
cannot be skipped by placing them after an if statement. Likewise,
try/catch cannot be used to catch errors; useifexists should be
used if the absence of the library is to be ignored.

See also

[useifexists||include] [function| private] [public] [1nTo]

useifexists

Import libraries if they exist.

Syntax
useifexists lib
useifexists libl, 1ib2,
Description

useifexists has the same syntax and effect as use, except that li-
braries which are not found are ignored without error.

See also

[use] [include] [function] [privatel [public] [info|

while

Loop controlled by a boolean expression.

104 Sysquake for LaTeX

Syntax

while expr
sl

end

Description

The statements between the while statement and the corresponding
end are executed repeatedly as long as the expression of the while
statement yields true (nonempty and all elements different from 0
and false).

If a break statement is executed in the scope of the while loop (i.e.
not in an enclosed loop), the loop is terminated.

If a continue statement is executed in the scope of the while loop,
statements following continue are ignored and a new loop is per-
formed if the while statement yields true.

Example
e = 1;
i=2;

while true % forever
eNew = (1 + 1/1i) " i;
if abs(e - eNew) < 0.001
break;
end
e = eNew;
i=2x%1i;
end
e
2.717

See also

[repeat] [for] [break] [continuel

6.14 Miscellaneous Functions

This section describes functions related to programming: function ar-
guments, error processing, evaluation, memory.

assert

Check that an assertion is true.

LME Reference — miscellaneous functions 105

Syntax

assert(expr)

assert(expr, str)

assert(expr, format, argl, arg2, ...)
assert(expr, identifier, format, argl, arg2, ...)

Description

assert(expr) checks that expr is true and throws an error otherwise.
Expression expr is considered to be true if it is a non-empty array
whose elements are all non-zero.

With more input arguments, assert checks that expr is true and
throws the error specified by remaining arguments otherwise. These
arguments are the same as those expected by function error.

When the intermediate code is optimized, assert can be ignored.
It should be used only to produce errors at an early stage or as a de-
bugging aid, not to trigger the try/catch mechanism. The expression
should not have side effects. The most common use of assert is to
check the validity of input arguments.

Example

function y = fact(n)
assert(length(n)==1 && isreal(n) && n==round(n), ’'LME:nonIntArg’);
y = prod(1l:n);

See also

lerror, warning [try|

builtin

Built-in function evaluation.

Syntax
(argoutl, ...) = builtin(fun, arginl, ...)

Description

(yl,y2,...)=builtin(fun,x1,x2,...) evaluates the built-in func-
tion fun with input arguments x1, x2, etc. Output arguments are as-
signed to y1, y2, etc. Function fun is specified by its name as a string.

builtin is useful to execute a built-in function which has been re-
defined.

106 Sysquake for LaTeX

Example
Here is the definition of operator plus so that it can be used with
character strings to concatenate them.

function r = plus(a, b)
if ischar(a) && ischar(b)

r = [a, bl;
else

r = builtin(’plus’, a, b);
end

The original meaning of plus for numbers is preserved:

1+ 2
3

"ab’ + 'cdef’
abcdef

See also

clear

Discard the contents of a variable.

Syntax

clear
clear(vl, v2, ...)
clear -functions

Description

Without argument, clear discards the contents of all the local
variables, including input arguments. With string input arguments,
clear(vl,v2,...) discards the contents of the enumerated
variables. Note that the variables are specified by strings; clear is a
normal function which evaluates its arguments if they are enclosed
between parenthesis. You can also omit parenthesis and quotes and
use [command syntax|

clear is usually not necessary, because local variables are auto-
matically discarded when the function returns. It may be useful if a
large variable is used only at the beginning of a function, or at the
command-line interface.

clear -functions or clear -f removes the definition of all func-
tions. It can be used only from the command-line interface, not in a
function.

LME Reference — miscellaneous functions 107

Examples

In the example below, clear(b) evaluates its argument and clears
the variable whose name is 'a’; clear b, without parenthesis and
quotes, does not evaluate it; the argument is the literal string 'b".

a=2;
b="a";
clear(b)
a
Undefined variable
b
a
clear b
b
Undefined variable b

ror

a

See also

[variable assignment] [isdefined|

deal

Copy input arguments to output arguments.

Syntax
(vl, v2, ...) = deal(e)
(vl, v2, .) = deal(el, e2, ...)

Description

With a single input argument, deal provides a copy of it to all its output
arguments. With multiple input arguments, deal provides them as
output arguments in the same order.

deal can be used to assign a value to multiple variables, to swap
the contents of two variables, or to assign the elements of a list to
different variables.

Examples
Swap variable a and b:

a 2;

"abc’;

(a, b) = deal(b, a)
a =

108 Sysquake for LaTeX

abc

b —

2
Copy the same random matrix to variables x, y, and z:

(x, y, z) = deal(rand(5));

Assign the elements of list 1 to variables v1, v2, and v3:

= {1, 'abc’, 3:5};

eal

(vl, v2, v3) =
vl =

(1{:})

See also

[varargin||varargout] [operator {}|

dumpvar

Dump the value of an expression as an assignment to a variable.

Syntax

dumpvar(value)

dumpvar(name, value)

dumpvar(fd, name, value)

str = dumpvar(value)

str dumpvar(name, value)
dumpvar(..., fd=fd, NPrec=nPrec)

Description

dumpvar(fd,name,value) writes to the channel fd (the standard out-
put by default) a string which would set the variable name to value, if
it was evaluated by LME. If name is omitted, only the textual represen-
tation of value is written. A file descriptor can also be specified as a
named argument fd.

With an output argument, dumpvar stores result into a string and
produces no output.

In addition to fd, dumpvar also accepts named argument NPrec for
the maximum number of digits in floating-point numbers.

LME Reference — miscellaneous functions 109

Examples

dumpvar (2+3)
5

a 6; dumpvar('a’, a)

=6;

'abc’; dumpvar(’string’, s)
string = "abc’;

dumpvar(’'x’, 1/3, NPrec=5)
X = 0.33333;

o

S

See also

[fprintf] [sprintf] [str2obj|

error

Display an error message and abort the current computation.

Syntax

error(str)

error(format, argl, arg2, ...)
error(identifier, format, argl, arg2, ...)
error(identifier)

error(..., throwAsCaller=b)

Description

Outside a try block, error(str) displays string str as an error mes-
sage and the computation is aborted. With more arguments, error
use the first argument as a format string and displays remaining argu-
ments accordingly, like fprintf.

In a try block, error(str) throws a user error without displaying
anything.

An error identifier can be added in front of other arguments. It is a
string made of at least two segments separated by semicolons. Each
segment has the same syntax as variable or function name (i.e. it
begins with a letter or an underscore, and it continues with letters,
digits and underscores.) The identifier can be retrieved with lasterr
or lasterror in the catch part of a try/catch construct and helps to
identify the error. For errors thrown by LME built-in functions, the first
segment is always LME.

The identifier of an internal error (an error which can be thrown
by an LME builti-in function, such as 'LME:indexOutOfRange’), can
be used as the only argument; then the standard error message is
displayed.

110 Sysquake for LaTeX

error also accepts a boolean named argument throwAsCaller. If
it is true, the context of the error is changed so that the function
calling error appears to throw the error itself. It is useful for fully
debugged functions whose internal operation can be hidden. Keyword
hideimplementation has a similar effect at the level of a library, by
hiding the internal error handling in all its functions.

Examples

error(’'Invalid argument.’);
Invalid argument.

o = 'ground’;

error(’'robot:hit’, 'The robot is going to hit %s’, o0);
The robot is going to hit ground

lasterror

message: 'The robot is going to hit ground’
identifier: ’'robot:hit’

Definition of a function which checks its input arguments, and a test
function which calls it:

function xmax = largestRoot(a, b, c)

// largest root of a X2 + b x +c =20

if b2 -4xax*xc<20

error(’'No real root’, throwAsCaller=true);

end

xmax = (-b + sqrt(b2 - 4 xa *xc)) / (2 x a);
function test

a = largestRoot(1,1,1);

Error message:

test
No real root (test;8)

Error message without throwAsCaller=true in the definition of
largestRoot:

test
No real root (largestRoot;4)
-> test;8

See also

warning| [try, [lasterr, [lasterror] |assert], [fprintf]
hideimplementation|

eval

Evaluate the contents of a string as an expression or statements.

LME Reference — miscellaneous functions 111

Syntax

x = eval(str_expression)
eval(str_statement)

Description

If eval has output argument(s), the input argument is evaluated as an
expression whose result(s) is returned. Without output arguments, the
input argument is evaluated as statement(s). eval can evaluate and
assign to existing variables, but cannot create new ones.

Examples

eval('1+2")
3
a eval('1+2")

3
eval('a=2+3")
5

Qo Il
n—1

See also

eva

exist

Existence of a function or variable.

Syntax

b
b

exist(name)
exist(name, type)

Description

exist returns true if its argument is the name of an existing function
or variable, or false otherwise. A second argument can restrict the
lookup to builtin functions ('builtin’), user functions (' function’),
or variables ('variable’).

Examples

exist(’'sin’)
true

exist(’'cos’, 'function’)
false

112 Sysquake for LaTeX

See also

[Lnfol [1sdefined|

feval

Function evaluation.

Syntax

(argoutl,...) = feval(fun,arginl,...)

Description

(yl,y2,...)=feval(fun,x1,x2,...) evaluates function fun with in-
put arguments x1, x2, etc. Output arguments are assigned to y1, y2,
etc. Function fun is specified by either its name as a string, a function
reference, or an anonymous or inline function.

If a variable f contains a function reference or an anonymous or
inline function, f(arguments) is equivalent to feval(f,arguments).

Examples

feval(’'sin’, 3:5)

0.1411 -0.7568 -0.9589

feval(@(x) sin(2xx), 3:5)

-0.2794 0.9894 -0.544
@(x) sin(2x*x);

un(3:5)

y

< 1

< 1

fun

< |
I =1

-0.2794 0.9894 -0.544

See also

[pbuitltin| [eval [fevalx] [apply] [inTine€] [operator @]

fun2str

Name of a function given by reference or source code of an inline
function.

LME Reference — miscellaneous functions 113

Syntax

fun2str(funref)
fun2str(inlinefun)

str
str

Description

fun2str(funref) gives the name of the function whose reference is
funref.

fun2str(inlinefun) gives the source code of the inline function
inlinefun.

Examples

fun2str(@sin)
sin

fun2str(inline(’'x+2xy’, 'x', 'y'))
function y=f(Xx,y);y=x+2xy;

See also

[operator @), [str2fun|

info

Information about LME.

Syntax

info

info builtin

info errors

info functions
info global

info libraries
info methods

info operators
info persistent
info size

info threads

info usedlibraries
info variables
info(kind, fd=fd)
str = info

SA = info(kind)

114 Sysquake for LaTeX

Description

info displays the language version. With an output argument, the
language version is given as a string.

info builtin displays the list of built-in functions with their mod-
ule name (modules are subsets of built-in functions). A letter u is
displayed after each untrusted function (functions which cannot be ex-
ecuted in the sandbox). With an output argument, info('builtin’)
gives a structure array which describes each built-in function, with the
following fields:

name function name
module module name
trusted true if the function is trusted

info operators displays the list of operators. With an output
argument, info('operators’) gives a list of structures, like
info('builtin’).

info functions displays the list of user-defined functions with the
library where they are defined and the line number in the source code.
Parenthesis denote functions known by LME, but not loaded; they also
indicate spelling errors in function or variable names. With an out-
put argument, info(’functions’) gives a structure array which de-
scribes each user-defined function, with the following fields:

library library name

name function name
loaded true if loaded
line line number if available, or []

info methods displays the list of methods. With an output argu-
ment, info('methods’) gives a structure array which describes each
method, with the following fields:

library library name

class class name

name function name

loaded true if loaded

line line number if available, or []

info variables displays the list of variables with their type and
size. With an output argument, info(’variables’) gives a structure
array which describes each variable, with the following fields:

name function name
defined true if defined

info global displays the list of all global variables. With an output
argument, info(’'global’) gives the list of the global variable names.
info persistent displays the list of all persistent variables. With
an output argument, info(’'persistent’) gives the list of the persis-

LME Reference — miscellaneous functions 115

tent variable names.

info libraries displays the list of all loaded libraries with the li-
braries they have loaded with use. The base context in which direct
commands are evaluated is displayed as (base); it is not an actual
library and contains no function definition. With an output argument,
info('libraries’) gives a structure array with the following fields:

library library name, or ' (base)’
sublibraries list of sublibraries

info usedlibraries displays the list of libraries available in the
current context. With an output argument, info('usedlibraries’)
gives the list of the names of these libraries.

info errors displays the list of error messages. With an output
argument, info(’'errors’) gives a structure array which describes
each error message, with the following fields:

id error ID
msg error message

info size displays the size in bytes of integer numbers (as used
for indices and most internal computations), double numbers, single
numbers, and pointers; the byte ordering in multibyte values (little-
endian if the least-significant byte comes first, else big-endian), and
whether arrays are stores column-wise or row-wise. With an output
argument, info(’'size’) gives them in a structure of six fields:

int integer size
double double size
single single size (or 0)
ptr pointer size
be true if big-endian

columnwise true for column-wise array layout

info threads displays the ID of all threads. With an output argu-
ment, info(’'threads’) gives a structure array which describes each
thread, with the following fields:

id thread ID
totaltime execution time in seconds

Only the first character of the argument is meaningful; info b is
equivalent to info builtin.

A named argument fd can specify the output channel; in that case,
the command syntax cannot be used.

Examples

info
LME 5.2
info s

116 Sysquake for LaTeX

int: 4 bytes

double: 8 bytes

ptr: 4 bytes

little endian

array layout: row-wise
info b

LME/abs

LME/acos

LME/acosh

(etc.)
info v

ans (1x1 complex)
vars = info('v")

var =

2x1 struct array (2 fields)

List of variables displayed on channel 2 (standard error channel):
info(’'v’, fd=2)
Library hierarchy in the command-line interface:

use lti

info 1
(base): _cli, 1ti
_cli: 1ti
1ti: polynom
polynom

The meaning is as follows: (base) is the context where commands are
evaluated; functions defined from the command-line interface, stored
in _cli, and in 1ti can be called from there. Functions defined from
the command-line interface also have access to the definitions of 1ti.
Library 1ti uses library polynom, but functions defined in polynom
cannot be called directly from commands (polynom does not appear
as a sublibrary of (base) or _cli). Finally, library polynom does not
import a sublibrary itself.

See also

[Lnmem|, which| [exist] luse€]

isequal

Comparison.

Syntax
b = isequal(a, b, ...)

LME Reference — miscellaneous functions 117

Description

isequal compares its input arguments and returns true if all of them
are equal, and false otherwise. Two numeric, logical and/or char arrays
are considered to be equal if they have the same size and if their
corresponding elements have the same value; an array which has at
least one NaN (not a number) element is not equal to any other array.
Two lists, cell arrays, structures or structure arrays are equal if the
corresponding elements or fields are equal. Structure fields do not
have to be in the same order.

isequal differs from operator == in that it results in a scalar logical
value and arrays do not have to have the same size. It differs from
operator === in that it does not require the type or the structure field
order to agree, and in the way NaN is interpreted.

See also

loperator ==} joperator ===

inline

Creation of inline function.

Syntax
fun = inline(funstr)
fun = inline(expr)
fun = inline(expr, argl, ...)
fun = inline(funstr, param)
fun = inline(expr, argl, ..., paramstruct)
fun = inline(expr, ..., true)

Description

Inline function are LME objects which can be evaluated to give a result
as a function of their input arguments. Contrary to functions declared
with the function keyword, inline functions can be assigned to vari-
ables, passed as arguments, and built dynamically. Evaluating them
with feval is faster than using eval with a string, because they are
compiled only once to an intermediate code. They can also be used
as the argument of functions such as fzero and fmin.

inline(funstr) returns an inline function whose source code is
funstr. Input argument funstr follows the same syntax as a plain
function. The function name is ignored.

inline(expr) returns an inline function with one implicit input ar-
gument and one result. The input argument expr is a string which

118 Sysquake for LaTeX

evaluates to the result. The implicit input argument of the inline func-
tion is a symbol made of a single lower-case letter different from i and
j, such as x or t, which is found in expr. If several such symbols are
found, the one closer to x in alphabetical order is picked.

inline(expr,argl,...) returns an inline function with one re-
sult and the specified arguments argl etc. These arguments are also
given as strings.

Inline functions also accept an additional input argument which cor-
respond to fixed parameters provided when the function is executed.
inline(funstr,param), where funstr is a string which contains the
source code of a function, stores param together with the function.
When the function is called, param is prepended to the list of input
arguments.

inline(expr,args...,paramstruct) is a simplified way to create
an inline function when the code consists of a single expression. args
is the names of the arguments which must be supplied when the inline
function is called, as strings; paramstruct is a structure whose fields
define fixed parameters.

inline(expr,...,true) defines a function which can return as
many output arguments as what feval (or other functions which call
the inline function) expects. Argument expr must be a function call
itself.

Anonymous functions created with operator @ are an alternative,
often easier way of creating inline functions. The result is the same.
Since inline is a normal function, it must be used in contexts where
fixed parameters cannot be created as separate variables.

Examples
A simple expression, evaluated at x=1 and x=2:

fun = inline(’cos(x)*exp(-x)");

y = feval(fun, 2)
-5.6319%e-2
y = feval(fun, 5)

1.9113e-3

A function of x and y:

1y ’

fun = inline(’exp(-x2-y2)', 'x', 'y');

A function with two output arguments (the string is broken in three
lines to have a nice program layout):

’

fun = inline([’function (a,b)=f(v);’, ...
"a=mean(v);’,...

LME Reference — miscellaneous functions 119

"b=prod(v)"(1/length(v));"1);
(am, gm) = feval(fun, 1:10)
am =
5.5
gm =
4.5287

Simple expression with fixed parameter a:

fun = inline(’'cos(ax*xx)’, 'x’', struct(’'a’,2));
feval(fun, 3)

0.9602

An equivalent function where the source code of a complete function
is provided:

fun = inline(’function y=f(a,x); y=cos(axx);’', 2);

feval(fun, 3)
0.9602

The same function created with the anonymous function syntax:

=2;

a
fun = @(x) cos(axx);

A function with two fixed parameters a and b whose values are pro-
vided in a list:

inline(’'function y=f(p,x);(a,b)=deal(p{:});y=axx+b;’,{2,3})
An inline function with a variable number of output arguments:
fun = inline('eig(exp(x))’,true);

= feval(fun, magic(2))
e:

-28.1440
38.2514
(v,D) = feval(fun, magic(2))
V =
-0.5455 -0.4921
0.8381 -0.8705
D =

-28.1440 0.0000
0.0000 38.2514

See also

[function| joperator @, [feval| |eval|

120 Sysquake for LaTeX

inmem

List of functions loaded in memory.

Syntax
inmem

SA = inmem
Description

inmem displays the list of user-defined functions loaded in memory with
the library where they are defined. With an output argument, inmem
gives the result as a structure array which describes each user-defined
function loaded in memory, with the following fields:

library library name
class class name (' ' for functions)
name function name

See also

isdefined

Check if a variable is defined.

Syntax

isdefined(var)

Description

isdefined(var) returns true if variable var is defined, and false oth-
erwise. Unlike ordinary functions, isdefined’'s argument must be a
variable known to LME, referenced by name without quotes, and not
an arbitrary expression. A variable is undefined in the following cir-
cumstances:

- function input argument when the function call does not supply
enough values;

— function output argument which has not been assigned to, in the
function itself, not in a function call;

- function local variable before its first assignment;

LME Reference — miscellaneous functions 121

— function local variable after it has been cleared with function
clear.

At command-line interface, clear usually discards completely vari-
ables.

Example

Let function f be defined as

function f(x)
if isdefined(x)
disp(x);
else
disp(’Argument x is not defined.’);
end

Then
f
Argument x is not defined.

f(3)
3

See also

[nargin| [exist| which||clear]| [function|

isfun

Test for an inline function or function reference.

Syntax
b = isfun(obj)
Description
isfun(obj) returns true if obj is an inline function or a function refer-

ence, or false otherwise.

See also

[Lsal [class| [fun2str]

122 Sysquake for LaTeX

isglobal

Test for the existence of a global variable.

Syntax
b = isglobal(str)
Description
isglobal(str) returns true if the string str is the name of a global

variable, defined as such in the current context.

See also

[LnTol lexist] [LsdeTined| which|

iskeyword

Test for a keyword name.

Syntax

b = iskeyword(str)
list = iskeyword

Description

iskeyword(str) returns true if the string str is a reserved keyword
which cannot be used as a function or variable name, or false other-
wise. Keywords include if and global, but not the name of built-in
functions like sin or i.

Without input argument, iskeyword gives the list of all keywords.

Examples

iskeyword(’'otherwise’)
true
iskeyword
{'break’, 'case’,’'catch’, 'continue’, 'else’, 'elseif’,
"end’, 'endfunction’, ’'for’,’function’, 'global’,
"hideimplementation’,’if’, 'otherwise’, 'persistent’,
"private’, 'public’, 'repeat’, 'return’, 'switch’, 'try’,
"until’, 'use’, 'useifexists’, 'while’}

LME Reference — miscellaneous functions 123

See also

ismac

Check whether computer runs under macOS.

Syntax

b = ismac

Description

ismac returns true on macQOS, false on other platforms.

See also

ispc

Check whether platform is a PC.

Syntax

b = ispc

Description

ispc returns true on Windows, false on other platforms.

See also

[Lsunix] [1smac|

isunix

Check whether computer runs under unix.

Syntax

b = isunix

124 Sysquake for LaTeX

Description

isunix returns true on unix platforms (including Mac OS X and unix-
like), false on other platforms.

See also

lasterr

Last error message.

Syntax

msg = lasterr
(msg, identifier) = lasterr

Description

lasterr returns a string which describes the last error. With two out-
put arguments, it also gives the error identifier. It can be used in the
catch part of the try construct.

Example

X = 2;
x(3)
Index out of range
(msg, identifier) = lasterr
msg =
Index out of range
identifier =
LME: indexOutOfRange

See also

[Lasterror,[try]lerron

lasterror

Last error structure.

Syntax

s = lasterror

LME Reference — miscellaneous functions 125

Description

lasterror returns a structure which describes the last error. It con-
tains the following fields:

identifier string short tag which identifies the error
message string error message

The structure can be used as argument to rethrow in the catch
part of a try/catch construct to propagate the error further.

Example

X = 2;

x(3)
Index out of range

lasterror
message: 'Index out of range’
identifier: ’'LME:indexOutOfRange’

See also

[Lasterr, [try] [rethrow, |error

namedargin

Named input arguments.

Syntax

function ... = fun(..., namedargin)

Description

namedargin is a special variable which can be used to collect named
input arguments. In the function declaration, it must be used as the
last (or unique) input argument. When the function is called with
named arguments, all of them are collected and stored in namedargin
as a structure, where field names correspond to the argument names.
With namedargin, there is no matching between the named argu-
ments and the argument names in the function declaration. If the
function is called without any named argument, namedargin is set to
an empty structure.

In the body of the function, namedargin is a normal variable. Its
fields can be accessed with the dot notation namedargin.name or
namedargin. (name). All functions using structures can be used, such

126 Sysquake for LaTeX

as fieldnames or isfield. namedargin can also be modified or
assigned to any value of any type.

When both varargin (for a variable number of unnamed argu-
ments) and namedargin are used in the same function, they must be
the last-but-one and the last arguments in the function declaration,
respectively.

Example

Here is a function which calculates the volume of a solid of revolution
defined by a function y=f(x) between x=a and x=b, rotating around
y=0. It accepts the same options as integral, given as a single option
argument, as hamed values or both.

function V = solidRevVolume(fun, a, b, opt=struct, namedargin)
opt = structmerge(opt, namedargin);
V = pi * integral(@(x) fun(x)"2, a, b, opt);

It can be called without any option (opt is set to its default value, an
empty structure):

cyl = solidRevVolume(@(x) 1, 0, 1)

cyl = 3.1416

cone = solidRevVolume(@(x) x, 0, 2, RelTol=le-4)
cone = 8.3776

See also

[varargin|[function]|struct] [fieldnames||structmerge| [operator .|

nargin

Number of input arguments.

Syntax

n
n

nargin
nargin(fun)

Description

Calling a function with less arguments than what the function expects
is permitted. In this case, the trailing variables are not defined. The
function can use the nargin function to know how many arguments
were passed by the caller to avoid accessing the undefined variables.
Named arguments (arguments passed as name=value by the caller)
are not included in the count.

LME Reference — miscellaneous functions 127

Note that if you want to have an optional argument before the end
of the list, you have to interpret the meaning of the variables yourself.
LME always sets the nargin first arguments.

There are two other ways to let a function accept a variable num-
ber of input arguments: to define default values directly in the func-
tion header, or to call varargin to collect some or all of the input
arguments in a list.

With one argument, nargin(fun) returns the (maximum) number
of input arguments a function accepts. fun can be the name of a built-
in or user function, a function reference, or an inline function. Func-
tions with a variable number of input arguments (such as fprintf)
give -1.

Examples
A function with a default value (pi) for its second argument:

function x = multiplyByScalar(a,k)
if nargin < 2 % multiplyByScalar(x)
k = pi; % same as multiplyByScalar(x,pi)
end
X = Kk * a;

A function with a default value (standard output) for its first argument.
Note how you have to interpret the arguments.

function fprintstars(fd,n)
if nargin == 1 % fprintstars(n) to standard output
fprintf(repmat(’'+’,1,fd)); % n is actually stored in fd
else
fprintf(fd, repmat(’x’',1,n));
end

Number of input arguments of function plus (usually called as the infix
operator "+"):

nargin(’'plus’)
2

See also

[nargout| [varargin| [isdefined| [function|

nargout

Number of output arguments.

128 Sysquake for LaTeX

Syntax

n
n

nargout
nargout (fun)

Description

A function can be called with between 0 and the number of output
arguments listed in the function definition. The function can use
nargout to check whether some output arguments are not used, so
that it can avoid computing them or do something else.

With one argument, nargout (fun) returns the (maximum) number
of output arguments a function can provide. fun can be the name of
a built-in or user function, a function reference, or an inline function.
Functions with a variable number of output arguments (such as feval)
give -1.

Example

A function which prints nicely its result when it is not assigned or used
in an expression:

function y = multiplyByTwo(x)
if nargout > 0

y = 2 % X;
else

fprintf(’'The double of %f is %f\n’, x, 2x*x);
end

Maximum number of output arguments of svd:

nargout(’svd’)
3

See also

[hargin| [varargout] [function|

rethrow

Throw an error described by a structure.

Syntax

rethrow(s)
rethrow(s, throwAsCaller=b)

LME Reference — miscellaneous functions 129

Description

rethrow(s) throws an error described by structure s, which contains
the same fields as the output of lasterror. rethrow is typically used
in the catch part of a try/catch construct to propagate further an
error; but it can also be used to initiate an error, like error.

rethrow also accepts a boolean named argument throwAsCaller.
If it is true, the context of the error is changed so that the function
calling rethrow appears to throw the error itself. It is useful for fully
debugged functions whose internal operation can be hidden.

Example

The error whose identifier is 'LME:indexQutOfRange’ is handled by
catch; other errors are not.

try
catch
err = lasterror;
if err.identifier === 'LME:indexOutOfRange’
else
rethrow(err);

end
end

See also

[Lasterror] [try| lerror]

str2fun

Function reference.

Syntax

funref = str2fun(str)

Description

str2fun(funref) gives a function reference to the function whose
name is given in string str. It has the same effect as operator @,
which is preferred when the function name is fixed.

130 Sysquake for LaTeX

Examples

str2fun(’sin’)
@sin

@sin
@sin

a = 'cos’;

str2fun(a)
@cos

See also

[operator @| [fun2str]

str2obj

Convert to an object its string representation.

Syntax
obj = str2obj(str)

Description

str2obj(str) evaluates string str and gives its result. It has the in-
verse effect as dumpvar with one argument. It differs from eval by
restricting the syntax it accepts to literal values and to the basic con-
structs for creating complex numbers, arrays, lists, structures, objects,
and other built-in types.

Examples

str2obj ('1+2j")
1+ 2j
str = dumpvar({l, ’'abc’, 1:100})
str =
{1, ...
"abc’, .
[1:100]1}
str2obj(str)
{1, 'abc’,real 1x100}
eval(str)
{1, "abc’,real 1x100}
str2obj(’'sin(2)")
Bad argument ’'str2obj’
eval(’'sin(2)")
0.9093

LME Reference — miscellaneous functions 131

See also

levall [dumpvar]

varargin

Remaining input arguments.

Syntax
function ... = fun(..., varargin)
function ... = fun(..., varargin, namedargin)

1 = varargin

Description

varargin is a special variable which can be used to collect input argu-
ments. In the function declaration, it must be used after the normal in-
put arguments; if namedargin is also present, varargin immediately
precedes it. When the function is called with more arguments than
what can be assigned to the other arguments, remaining ones are col-
lected in a list and assigned to varargin. In the body of the function,
varargin is a normal variable. Its elements can be accessed with the
brace notation varargin{i}. nargin is always the total number of
arguments passed to the function by the caller.

When the function is called with fewer arguments than what is de-
clared, varargin is set to the empty list, {}.

Example

Here is a function which accepts any number of square matrices and
builds a block-diagonal matrix:

function M = blockdiag(varargin)
M=T1;
for block = varargin
// block takes the value of each input argument
(m, n) = size(block);
M(end+1:end+m,end+1l:end+n) = block;
end

In the call below, varargin contains the list {ones(3),2xones(2),3}.

blockdiag(ones(3),2*xones(2),3)
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

[ocNoNo]

132 Sysquake for LaTeX

0 0 0 2 2 0
0 0 0 2 2 0
0 0 0 0 0 3

See also

[hargin| [namedargin| |varargout] [function|

varargout

Remaining output arguments.

Syntax

function (..., varargout) = fun(...)
varargout = ...

Description

varargout is a special variable which can be used to dispatch output
arguments. In the function declaration, it must be used as the last
(or unique) output argument. When the function is called with more
output arguments than what can be obtained from the other argu-
ments, remaining ones are extracted from the list varargout. In the
body of the function, varargout is a normal variable. Its value can
be set globally with the brace notation {...} or element by element
with varargout{i}. nargout can be used to know how many output
arguments to produce.

Example

Here is a function which differentiates a vector of values as many
times as there are output arguments:

function varargout = multidiff(v)
for i = l:nargout

v = diff(v);
varargout{i} = v;
end

In the call below, [1,3,7,2,5,3,1,8] is differentiated four times.

(vl, v2, v3, v4) = multidiff([1,3,7,2,5,3,1,8])
vl =

2 4 -5 3 -2 -2 7
v2

2 -9 8 -5 0 9

LME Reference — miscellaneous functions

v3 =
-11 17 -13 5 9
v4 =
28 -30 18 4
See also

[nargout| [varargin| [function|

variables

Contents of the variables as a structure.

Syntax

v = variables

Description

133

variables returns a structure whose fields contain the variables de-

fined in the current context.

Example

3;
1:

T Q

= 5;
variables
a: 3

b: real 1x5

See also

[infdl

warning

Write a warning to the standard error channel.

Syntax

warning(msg)
warning(format, argl, arg2, ...)

134 Sysquake for LaTeX

Description

warning(msg) displays the string msg. It should be used to notify the
user about potential problems, not as a general-purpose display func-
tion.

With more arguments, warning uses the first argument as a format
string and displays remaining arguments accordingly, like fprintf.

Example

warning