
Calerga

Sysquake Remote
User Manual

2 Sysquake Remote ©1999-2016, Calerga Sàrl

Copyright 1999-2016, Calerga Sàrl.

No part of this publication may be reproduced, transmitted or stored in
any form or by any means including electronic, mechanical, recording or oth-
erwise, without the express written permission of Calerga Sàrl.

The information provided in this manual is for reference and information
use only, and Calerga assumes no responsibility or liability for any inaccura-
cies or errors that may appear in this documentation.

Sysquake Remote, Sysquake, LME, Calerga, the Calerga logo, and icons
are copyrighted and are protected under the Swiss and international laws.
Copying this software for any reason beyond archival purposes is a violation
of copyright, and violators may be subject to civil and criminal penalties.

Sysquake, Sysquake Remote, LME, and Calerga are trademarks of Calerga
Sàrl. All other trademarks are the property of their respective owners.

Sysquake Remote User Manual, December 2016.
Yves Piguet, Calerga Sàrl, La Tour-de-Peilz, Switzerland.

Most of the material in Sysquake Remote User Manual has first been writ-
ten as a set of XHTML files, with lots of cross-reference links. Since (X)HTML is
not very well suited for printing, it has been converted to LATEX with the help of
a home-made conversion utility. Additional XML tags have been used to bene-
fit from LATEX features: e.g. raster images have been replaced with EPS images,
equations have been converted from text to real mathematic notation, and a
table of contents and an index have been added. The same method has been
used to create the material for the help command. Thanks to the make utility,
the whole process is completely automatic. This system has proved to be very
flexible to maintain three useful formats in parallel: two for on-line help, and
one for high-quality printing.

World Wide Web: http://www.calerga.com
E-mail: sysquake@calerga.com
Mail: Calerga Sàrl

Ch. des Murs Blancs 25
1814 La Tour-de-Peilz
Switzerland

Typesetting: 2016-12-29

http://www.calerga.com
mailto:sysquake@calerga.com

Contents

1 Introduction 7
1.1 Programming model . 8

2 Installing Sysquake Remote 9
2.1 Configuration . 11

3 LME Tutorial 19
3.1 Simple operations . 19
3.2 Complex Numbers . 20
3.3 Vectors and Matrices . 22
3.4 Polynomials . 25
3.5 Strings . 26
3.6 Variables . 26
3.7 Loops and Conditional Execution 27
3.8 Functions . 27
3.9 Local and Global Variables . 30

4 Sysquake Remote Tutorial 33
4.1 magic.sqr . 33
4.2 Histogram . 35
4.3 command.sqr . 39

5 LME Reference 43
5.1 Program format . 43
5.2 Function Call . 45
5.3 Named input arguments . 45
5.4 Command syntax . 46
5.5 Libraries . 46
5.6 Types . 47
5.7 Input and Output . 57
5.8 Error Messages . 58
5.9 Character Set . 63
5.10 List of Commands, Functions, and Operators 64
5.11 Variable Assignment and Subscripting 75
5.12 Programming Constructs . 83

4 Sysquake Remote ©1999-2016, Calerga Sàrl

5.13 Miscellaneous Functions . 99
5.14 Sandbox Function . 127
5.15 Operators . 129
5.16 Mathematical Functions . 160
5.17 Linear Algebra . 217
5.18 Array Functions . 264
5.19 Triangulation Functions . 303
5.20 Integer Functions . 310
5.21 Non-Linear Numerical Functions 313
5.22 String Functions . 335
5.23 Quaternions . 363
5.24 List Functions . 373
5.25 Structure Functions . 377
5.26 Object Functions . 384
5.27 Logical Functions . 389
5.28 Dynamical System Functions 399
5.29 Input/Output Functions . 408
5.30 File System Functions . 425
5.31 Path Manipulation Functions 427
5.32 XML Functions . 429
5.33 Time Functions . 437
5.34 Date Functions . 440
5.35 MAT-files . 442
5.36 Shell . 443
5.37 Graphics . 449
5.38 Remarks on graphics . 450
5.39 Base Graphical Functions . 454
5.40 3D Graphics . 491
5.41 Graphics for Dynamical Systems 505
5.42 Sysquake Remote Functions 539
5.43 Dynamic Extension Loading 552

6 Extensions 555
6.1 Lapack . 557
6.2 Long Integers . 574
6.3 Data Compression . 575
6.4 Image Files . 579
6.5 SQLite . 583
6.6 Compiling the extension . 584
6.7 Sockets . 590
6.8 System Log . 596
6.9 Launch URL . 597
6.10 Download URL . 598
6.11 Web Services . 598
6.12 Signal . 612

Contents 5

7 External Code 617
7.1 Implementation . 617
7.2 Callbacks . 618
7.3 Start up and shut down . 623
7.4 Examples . 625
7.5 Remarks . 632

8 Libraries 633
8.1 sqr . 634
8.2 stdlib . 637
8.3 stat . 648
8.4 probdist . 657
8.5 polynom . 663
8.6 ratio . 672
8.7 bitfield . 675
8.8 filter . 681
8.9 lti . 691
8.10 lti (graphics) . 722
8.11 sigenc . 729
8.12 wav . 735
8.13 date . 737
8.14 constants . 740
8.15 colormaps . 741
8.16 polyhedra . 749
8.17 solids . 754

Index 761

Chapter 1

Introduction

Sysquake Remote is a module for Apache and compatible HTTP
servers. It implements LME (Lightweight Math Engine, the
programming language at the heart of Sysquake and other Calerga
products), most graphical commands of Sysquake (without support
for live interaction), and functions specific to the HTTP protocol.

Typical applications of Sysquake Remote include the following:

Graphics with user-specified parameters Graphics are gener-
ated dynamically when the user requests the Web page. Some
parameters can be changed in a form with control elements such
as text fields for numerical values. The user can change these pa-
rameters and observe their influence on the graphics. The author
has complete freedom to add explanations, hypertext links, static
images, or any other feature which are used on the Web.

Remote interactive computation environment A text field al-
lows the user to enter any kind of computation using the well-
known Matlab-like Sysquake language. Variables, control struc-
tures such as loops and conditional execution, and graphics are
available. The result can be displayed in the same Web page to-
gether with the code used to generate them, ready to be used in a
report.

Remote data processing The user submits numerical data from
a spreadsheet or a MAT-file and let them be analyzed in order to
get useful statistics, or a prediction model.

Processing of real-time data A Web page always displays up-
to-date key values based on the processing of real-time data, for
instance from the production of a plant or from financial quotes.

Some of these applications could also be deployed with local appli-
cations (such as Sysquake) or other Web technologies (such as Java).
The table below summarizes the strong points of each of them.

8 Sysquake Remote ©1999-2016, Calerga Sàrl

Feature SQR Sysquake Java
Client requirements Browser Sysquake Java-enabled Browser
Native math language Yes Yes No
High-level graphics Yes Yes With libraries
Live interactivity No Yes Possible
Embedding in Web page Yes No Yes
Interactive code evaluation Yes Yes No

1.1 Programming model

On the server, HTML pages where dynamic contents are desired are
renamed with a .sqr extenson instead of .html or .htm, in order to
let Apache know that they must be processed by Sysquake Remote.
In the HTML code, fragments of LME code are inserted. When a .sqr
page is requested by the client (who entered its URL or followed a
link from another page), Sysquake Remote evaluates the LME code
fragments and replaces them with the output they produce, which
can be text (possibly formatted with HTML tags), embedded images,
or both. This new page which has no more LME code is sent to the
client, which sees a plain HTML page.

Graphics are handled in a transparent way for both the developer
and the client. When graphical commands are evaluated, a temporary
image file is produced automatically, and a reference to it is inserted
in the HTML page. Image files are removed from the server after use.

LME code fragments have access to information about the connec-
tion (such as the client IP number or cookies). They can retrieve form
data sent with the GET or POST method. The coordinates of click in
graphics can be converted automatically from pixel position to the nat-
ural coordinates used to produce the graphics. Access to the server
file system or to shell commands opens Sysquake Remote to the out-
side world.

Chapter 2

Installing Sysquake
Remote

To install Sysquake Remote, follow these steps:

Install Apache with mod_so enabled Follow the documentation
of Apache. You can check that mod_so (the support for modules
included dynamically at run-time) is enabled by typing

httpd -l

Among others, the module "mod_so.c" should be displayed.

If Apache 1.3 is not installed yet, you can try the following if you
do not want to read its documentation:

– Download the latest Apache 1.3.x source code tar.gz to a suit-
able place, such as your home directory. You can find Apache
at www.apache.org. Note that currently, Sysquake Remote is
not compatible with Apache 2. You also need developer tools,
such as a C compiler and a "make" utility, which you can find
with your Unix distribution or at www.gnu.org.

– gzip -d apache*.tar.gz

– tar xf apache*.tar

– cd apache*
– su

– ./configure -enable-module=so -enable-shared=max
-prefix=/usr/local/apache

– make

– make install

– /usr/local/apache/bin/apachectl start

10 Sysquake Remote ©1999-2016, Calerga Sàrl

If an error message says that some symbols cannot be
resolved, try adding -enable-rule=SHARED_CHAIN
-enable-rule=SHARED_CORE to configure.

On macOS, Apache should already be installed; you can start it by
activating Personal Web Sharing in the System Preferences. When
you make changes to Apache’s configuration file (normally
/private/etc/httpd/httpd.conf), you can restart Apache by
stopping and starting again Personal Web Sharing in System
Preferences, or by typing sudo apachectl restart in a Terminal
window.

Install mod_sqr Copy mod_sqr.so to the directory of Apache
modules, typically /usr/local/apache/libexec.

If you do not know where Apache is installed, type which
httpdctl, which should display the location of Apache binaries
(executable files), such as /usr/local/apache/bin/apachectl.
The path to the directory of Apache module is given by replacing
bin/apachectl with libexec.

Install Sysquake Remote libraries Copy the lib directory and
its contents to a suitable location, such as /usr/local/LME/lib,
which must be matched by the SQRLibraryPath directive (see be-
low).

Configure Sysquake Remote With appropriate permissions (you
should probably be root: type su root), edit httpd.conf (typically
in a conf directory at the same level as libexec) and add the
following lines:

– To load the module:
LoadModule sqr_module libexec/mod_sqr.so

– To enable the module:
AddModule mod_sqr.c

– To map files whose suffix is .sqr to make them processed by
the Sysquake Remote module:
<IfModule mod_sqr.c>
AddType application/x-sysquake-remote .sqr
</IfModule>

– To add the registration key which enables Sysquake Remote
(copy the whole line of the registration key exactly as you re-
ceived it):
SQRRegistration webserver-hostname registration-key

or

SQRRegistration webserver-hostname registration-key name

Install 11

If you have not received the registration key, you can skip
this step now. Each .sqr page is displayed with a message
which says that Sysquake Remote is not registered and the
host name of the server. Please specify this host name, ex-
actly as it is displayed, when you order your registration key.

– Add other configuration directives (see below). Options are
secure by default, so this step is not absolutely required. Note
however that to have access to LME libraries, you must add a
SQRLibraryPath directive, such as
SQRLibraryPath /usr/local/LME/lib

Restart Apache Type

apachectl restart

(if apachectl is not in your path, type its complete path, such as
/usr/local/apache/bin/apachectl restart)

2.1 Configuration

This section describes the configuration directives which can
be added to the files httpd.conf (main configuration file,
usually in /usr/local/apache/conf for Solaris and Linux, and
/private/etc/httpd for macOS) and .htaccess (in directories).

Here is a possibility for such options. Note that only the
SQRRegistration line is required, and that default options are secure
by default; you should read carefully the documentation below before
changing the options on a server on the Internet or in an insecure
environment.

SQRRegistration www.company.com 6e8a.281f.a924.200306.a
SQRStartup useifexists stdlib, sqr;
SQRLibraryPath /usr/local/LME/lib
SQRLocalLibraries on
SQROutputLimit 10000
SQRTimeout 1000
SQREnableStderr on
SQREnableAns on

SQRCleanImagesCmd

Syntax: SQRCleanImagesCmd command
Context: server config
Override: n/a
This directive changes the command run periodically to clear the

image files. The default value is a command which keeps at least the
last 30 images:

12 Sysquake Remote ©1999-2016, Calerga Sàrl

cd /tmp/mod_sqr_im/; rm -f ‘ls -t|tail +30‘ >&/dev/null

SQRDefaultFigureSize

Syntax: SQRDefaultFigureSize width height
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive changes the default figure size. The default default

is 300 pixels wide by 200 pixels high.

SQRDisableFunction

Syntax: SQRDisableFunction list of commands to be disabled
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive disables all the functions which are listed. Several

such directives can be used. This may be useful for security reasons,
for instance to disable direct access to the shell with the unix com-
mand.

SQREnable

Syntax: SQREnable none|fileio|shell|fileio shell
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive enables potentially unsecure functions. The default

value is none. Functions which can be enabled are:
Name Enabled feature
fileio unrestricted file access with fopen
fileio=c file access with fopen, same restrictions for reading and writing
fileio=cc file access with fopen, different restrictions for reading and writing
shell shell access with unix

File access restrictions are specified with one of the following char-
acters:
Code Access
x no access
l local access, in the root directory of Apache
s subdirectory access, in the root directory of Apache or one of its descendants
a access to all files

For instance, the following directive enables read access with
fopen(filename,’r’) to any file in the root directory of Apache
or one of its descendants, and no write access at all with
fopen(filename,’w’):

Install 13

SQREnable fileio=sx

SQREnableAns

Syntax: SQREnableAns off|on
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive enables the assignment of expression results to vari-

able ans. The default is off.

SQREnableHelp

Syntax: SQREnableHelp off|on
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive enables help function. The default is off.

SQREnableStderr

Syntax: SQREnableStderr off|on
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive enables the sending of standard error output to the

client. Standard error contains error messages, which may reveal the
functionning of LME code. The default is on.

SQRFigureFont

Syntax: SQRFigureFont monospace|sans-serif|serif
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive selects the default font used in figures. The default is

sans-serif.

SQRImageFileType

Syntax: SQRImageFileType GIF|PNG|JPEG|JPG
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive selects the default file type used for images. The de-

fault is GIF (uncompressed for patent reasons); it is supported natively
by virtually all graphical browsers, back to the beginnings of the Web.
It supports only 216 different colors (each component of red, green,
and blue can take 6 different values). PNG supports 24-bit colors and

14 Sysquake Remote ©1999-2016, Calerga Sàrl

is supported by most recent browsers; it compresses images without
loss of quality. JPEG and JPG (synonymous) are lossy, i.e. compres-
sion ratio is large (typically 5-20), but the decompressed image has a
lower quality than the original one. This is especially visible with im-
ages with lines and text, which makes it less suitable for all Sysquake
Remote graphical commands but image. JPEG images do not support
transparency. The trade-off between the quality and the compression
ratio is fixed with directive SQRImageQuality.

SQRImagePath

Syntax: SQRImagePath path
Context: server config
Override: n/a
This directive sets the path where image files are stored on the

server. The default is /tmp/mod_sqr_im. If the bottom-most direc-
tory does not exist, it is created (if the user Apache runs under has
enough privileges; otherwise, you should create it by hand with mkdir
/tmp/mod_sqr_im and change its ownership to Apache’s user).

SQRImageQuality

Syntax: SQRImageQuality quality
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive sets the quality factor used for JPEG output, a num-

ber between 0 (worst quality, large compression ratio) and 100 (best
quality, smallest compression ratio). Even with a quality of 100, the
JPEG image has some artifacts which are visible in images with sharp
contrast (lines and text).

SQRInputLimit

Syntax: SQRInputLimit n
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive sets the maximum amount of data accepted from the

client with the POST method, in kibibytes (1 kibibyte is 1024 bytes).
The default is 32.

SQRLibraryPath

Syntax: SQRLibraryPath paths
Context: server config, virtual host, directory, .htaccess
Override: Options

Install 15

This directive sets the path where library files are stored on the
server. Several directories may be separated by colons or semicolons.
The default is none.

SQRLoadExtension

Syntax: SQRLoadExtension path
Context: server config
Override: Options
This directive loads an extension which adds new functions to LME.

Extensions are compatible with Sysquake’s on the same platform, but
must be loaded explicitly for security reasons. The default is none.

SQRLocalLibraries

Syntax: SQRLocalLibraries on|off
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive enables the search of libraries in the same directory

as the file being processed. The default is off.

SQRMemory

Syntax: SQRMemory n
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive specifies how much memory must be allocated to

LME, in kibibytes. The default is 8192 (8 mebibytes).

SQROutputLimit

Syntax: SQROutputLimit none|n
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive specifies the maximum amount of data sent back to

the client as the contents of the request, in kibibytes (1 kibibyte is
1024 bytes). The default is 128.

SQRRandomSeed

Syntax: SQRRandomSeed on|off
Context: server config, virtual host, directory, .htaccess
Override: Options

16 Sysquake Remote ©1999-2016, Calerga Sàrl

This directive specifies whether the seeds for the random genera-
tors rand, randn and randi are set to a random initial value (based on
the system clock). The default is on.

SQRegistration

Syntax: SQRegistration hostname key [username]
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive specifies the registration information for Sysquake

Remote. It must match the host name of the server. If no such di-
rective is found, Sysquake Remote displays a message at the top of
each page which states that Sysquake Remote is not registered and it
cannot be used for a long period, and which host name it has.

SQRStartup

Syntax: SQRStartup commands
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive specifies the commands which are executed before

each page. The default is none. You can import default libraries such
as stdlib and sqr:

SQRStartup useifexists stdlib, stat;

Note that useifexists fails silently, without an error, if libraries are
not found. You may prefer use.

SQRSubdirEnforcement

Syntax: SQRSubdirEnforcement on|off
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive specifies whether limits set by SQREnable, SQROut-

putLimit and SQRTimeout are enforced in subdirectories. If it is on,
only stricter limits can be specified by subdirectories. The default is
on.

SQRTimeout

Syntax: SQRTimeout none|n
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive specifies a time limit (in milliseconds) for the execu-

tion of each page. The default is 5000 (5 s).

Install 17

SQRTransparentBackground

Syntax: SQRTransparentBackground on|off
Context: server config, virtual host, directory, .htaccess
Override: Options
This directive enables a transparent background for figures. Only

the part outside the frame is transparent. The default is on.

Chapter 3

LME Tutorial

This chapter introduces LME(TM) (Lightweight Math Engine), the inter-
preter for numeric computing used by Sysquake, and shows you how
to perform basic computations. It supposes you can type commands
to a command-line interface. You are invited to type the examples as
you read this tutorial and to experiment on your own. For a more sys-
tematic description of LME, please consult the LME Reference chapter.

In the examples below, we assume that LME displays a prompt >.
This is not the case for all applications. You should never type it your-
self. Enter what follows the prompt on the same line, hit the Return
key (or tap the Eval or Execute button), and observe the result.

3.1 Simple operations

LME interprets what you type at the command prompt and displays
the result unless you end the command with a semicolon. Simple ex-
pressions follow the syntactic rules of many programming languages.

> 2+3*4
ans =
14
> 2+3/4
ans =
2.75

As you can see, the evaluation order follows the usual rules which
state that the multiplication (denoted with a star) and division (slash)
have a higher priority than the addition and subtraction. You can
change this order with parenthesis:

> (2+3)*4
ans =
20

20 Sysquake Remote ©1999-2016, Calerga Sàrl

The result of expressions is automatically assigned to variable ans
(more about variables later), which you can reuse in the next expres-
sion:

> 3*ans
ans =
60

Power is represented by the ˆ symbol:

> 2̂ 5
ans =
32

LME has many mathematical functions. Trigonometric functions as-
sume that angles are expressed in radians, and sqrt denotes the
square root.

> sin(pi/4) * sqrt(2)
ans =
1

3.2 Complex Numbers

In many computer languages, the square root is defined only for non-
negative arguments. However, it is extremely useful to extend the set
of numbers to remove this limitation. One defines such that 2 = −1,
and applies all the usual algebraic rules. For instance,

p
−1 =

p

2 = ,
and

p
−4 =

p
4
p
−1 = 2. Complex numbers of the form + b are the

sum of a real part and an imaginary part b. It should be mentioned
that , the symbol used by mathematicians, is called j by engineers.
LME accepts both symbols as input, but it always writes it j. You can
use it like any function, or stick an i or j after a number:

> 2+3*j
ans =
2+3j
> 3j+2
ans =
2+3j

Many functions accept complex numbers as argument, and return a
complex result when the input requires it even if it is real:

> sqrt(-2)
ans =
0+1.4142i
> exp(3+2j)

Tutorial 21

ans =
-8.3585+18.2637j
> log(-8.3585+18.2637j)
ans =
3+2j

To get the real or imaginary part of a complex number, use the func-
tions real or imag, respectively:

> real(2+3j)
ans =
2
> imag(2+3j)
ans =
3

Complex numbers can be seen as vectors in a plane. Then addition
and subtraction of complex numbers correspond to the same opera-
tions applied to the vectors. The absolute value of a complex number,
also called its magnitude, is the length of the vector:

> abs(3+4j)
ans =
5
> sqrt(3̂ 2+4̂ 2)
ans =
5

The argument of a complex number is the angle between the x axis
("real axis") and the vector, counterclockwise. It is calculated by the
angle function.

> angle(2+3j)
ans =
0.9828

The last function specific to complex numbers we will mention here is
conj, which calculates the conjugate of a complex number. The con-
jugate is simply the original number where the sign of the imaginary
part is changed.

> conj(2+3j)
ans =
2-3j

Real numbers are also complex numbers, with a null imaginary part;
hence

> abs(3)
ans =

22 Sysquake Remote ©1999-2016, Calerga Sàrl

3
> conj(3)
ans =
3
> angle(3)
ans =
0
> angle(-3)
ans =
3.1416

3.3 Vectors and Matrices

LME manipulates vectors and matrices as easily as scalars. To define
a matrix, enclose its contents in square brackets and use commas to
separate elements on the same row and semicolons to separate the
rows themselves:

> [1,2;5,3]
ans =
1 2
5 3

Column vectors are matrices with one column, and row vectors are
matrices with one row. You can also use the colon operator to build a
row vector by specifying the start and end values, and optionally the
step value. Note that the end value is included only if the range is a
multiple of the step. Negative steps are allowed.

> 1:5
ans =
1 2 3 4 5
> 0:0.2:1
ans =
0 0.2 0.4 0.6 0.8 1
> 0:-0.3:1
ans =
0 -0.3 -0.6 -0.9

There are functions to create special matrices. The zeros, ones, rand,
and randn functions create matrices full of zeros, ones, random num-
bers uniformly distributed between 0 and 1, and random numbers nor-
mally distributed with a mean of 0 and a standard deviation of 1, re-
spectively. The eye function creates an identity matrix, i.e. a matrix
with ones on the main diagonal and zeros elsewhere. All of these func-
tions can take one scalar argument n to create a square n-by-n matrix,
or two arguments m and n to create an m-by-n matrix.

Tutorial 23

> zeros(3)
ans =
0 0 0
0 0 0
0 0 0
> ones(2,3)
ans =
1 1 1
1 1 1
> rand(2)
ans =
0.1386 0.9274
0.3912 0.8219
> randn(2)
ans =
0.2931 1.2931
-2.3011 0.9841
> eye(3)
ans =
1 0 0
0 1 0
0 0 1
> eye(2,3)
ans =
1 0 0
0 1 0

You can use most scalar functions with matrices; functions are applied
to each element.

> sin([1;2])
ans =
0.8415
0.9093

There are also functions which are specific to matrices. For example,
det calculates the determinant of a square matrix:

> det([1,2;5,3])
ans =
-7

Arithmetic operations can also be applied to matrices, with their usual
mathematical behavior. Additions and subtractions are performed on
each element. The multiplication symbol * is used for the product of
two matrices or a scalar and a matrix.

> [1,2;3,4] * [2;7]
ans =
16
34

24 Sysquake Remote ©1999-2016, Calerga Sàrl

The division symbol / denotes the multiplication by the inverse of the
right argument (which must be a square matrix). To multiply by the
inverse of the left argument, use the symbol \. This is handy to solve
a set of linear equations. For example, to find the values of and y
such that + 2y = 2 and 3 + 4y = 7, type

> [1,2;3,4] \ [2;7]
ans =
3
-0.5

Hence = 3 and y = −0.5. Another way to solve this problem is
to use the inv function, which return the inverse of its argument. It is
sometimes useful to multiply or divide matrices element-wise. The .*,
./ and .\ operators do exactly that. Note that the + and - operators
do not need special dot versions, because they perform element-wise
anyway.

> [1,2;3,4] * [2,1;5,3]
ans =
12 7
26 15
> [1,2;3,4] .* [2,1;5,3]
ans =
2 2
15 12

Some functions change the order of elements. The transpose operator
(tick) reverses the columns and the rows:

> [1,2;3,4;5,6]’
ans =
1 3 5
2 4 6

When applied to complex matrices, the complex conjugate transpose
is obtained. Use dot-tick if you just want to reverse the rows and
columns. The flipud function flips a matrix upside-down, and fliplr
flips a matrix left-right.

> flipud([1,2;3,4])
ans =
3 4
1 2
> fliplr([1,2;3,4])
ans =
2 1
4 3

To sort the elements of each column of a matrix, or the elements of a
row vector, use the sort function:

Tutorial 25

> sort([2,4,8,7,1,3])
ans =
1 2 3 4 7 8

To get the size of a matrix, you can use the size function, which gives
you both the number of rows and the number of columns unless you
specify which of them you want in the optional second argument:

> size(rand(13,17))
ans =
13 17
> size(rand(13,17), 1)
ans =
13
> size(rand(13,17), 2)
ans =
17

3.4 Polynomials

LME handles mostly numeric values. Therefore, it cannot differenti-
ate functions like ƒ () = sn(e). However, a class of functions has a
paramount importance in numeric computing, the polynomials. Poly-
nomials are weighted sums of powers of a variable, such as 22+ 3−
5. LME stores the coefficients of polynomials in row vectors; i.e. 22+
3 − 5 is represented as [2,3,-5], and 25 + 3 as [2,0,0,0,3,0].

Adding two polynomials would be like adding the coefficient vectors
if they had the same size; in the general case, however, you had better
use the function addpol, which can also be used for subtraction:

> addpol([1,2],[3,7])
ans =
4 9
> addpol([1,2],[2,4,5])
ans =
2 5 7
> addpol([1,2],-[2,4,5])
ans =
-2 -3 -3

Multiplication of polynomials corresponds to convolution (no need to
understand what it means here) of the coefficient vectors.

> conv([1,2],[2,4,5])
ans =
2 8 13 10

Hence (+ 2)(22 + 4 + 5) = 23 + 82 + 13 + 10.

26 Sysquake Remote ©1999-2016, Calerga Sàrl

3.5 Strings

You type strings by delimiting them with single quotes:

> ’Hello, World!’
ans =
Hello, World!

If you want single quotes in a string, double them:

> ’Easy, isn’’t it?’
ans =
Easy, isn’t it?

Some control characters have a special representation. For example,
the line feed, used in LME as an end-of-line character, is \n:

> ’Hello,\nWorld!’
ans =
Hello,
World!

Strings are actually matrices of characters. You can use commas and
semicolons to build larger strings:

> [’a’,’bc’;’de’,’f’]
ans =
abc
def

3.6 Variables

You can store the result of an expression into what is called a variable.
You can have as many variables as you want and the memory permits.
Each variable has a name to retrieve the value it contains. You can
change the value of a variable as often as you want.

> a = 3;
> a + 5
ans =
8
> a = 4;
> a + 5
ans =
9

Note that a command terminated by a semicolon does not display its
result. To see the result, remove the semicolon, or use a comma if
you have several commands on the same line. Implicit assignment to
variable ans is not performed when you assign to another variable or
when you just display the contents of a variable.

Tutorial 27

> a = 3
a =
3

> a = 7, b = 3 + 2 * a
a =
7

b =
17

3.7 Loops and Conditional Execution

To repeat the execution of some commands, you can use either a
for/end block or a while/end block. With for, you use a variable
as a counter:

> for i=1:3;i,end
i =
1

i =
2

i =
3

With while, the commands are repeated as long as some expression
is true:

> i = 1; while i < 10; i = 2 * i, end
i =
2

i =
4

i =
8

You can choose to execute some commands only if a condition holds
true :

> if 2 < 3;’ok’,else;’amazing...’,end
ans =
ok

3.8 Functions

LME permits you to extend its set of functions with your own. This is
convenient not only when you want to perform the same computation
on different values, but also to make you code clearer by dividing the
whole task in smaller blocks and giving names to them. To define a

28 Sysquake Remote ©1999-2016, Calerga Sàrl

new function, you have to write its code in a file; you cannot do it from
the command line. In Sysquake, put them in a function block.

Functions begin with a header which specifies its name, its input
arguments (parameters which are provided by the calling expression)
and its output arguments (result of the function). The input and out-
put arguments are optional. The function header is followed by the
code which is executed when the function is called. This code can use
arguments like any other variables.

We will first define a function without any argument, which just
displays a magic square, the sum of each line, and the sum of each
column:

function magicsum3
magic_3 = magic(3)
sum_of_each_line = sum(magic_3, 2)
sum_of_each_column = sum(magic_3, 1)

You can call the function just by typing its name in the command line:

> magicsum3
magic_3 =

8 1 6
3 5 7
4 9 2

sum_of_each_line =
15
15
15

sum_of_each_column =
15 15 15

This function is limited to a single size. For more generality, let us add
an input argument:

function magicsum(n)
magc = magic(n)
sum_of_each_line = sum(magc, 2)
sum_of_each_column = sum(magc, 1)

When you call this function, add an argument:

> magicsum(2)
magc =
1 3
4 2

sum_of_each_line =
4
6

sum_of_each_column =
5 5

Tutorial 29

Note that since there is no 2-by-2 magic square, magic(2) gives some-
thing else... Finally, let us define a function which returns the sum of
each line and the sum of each column:

function (sum_of_each_line, sum_of_each_column) = magicSum(n)
magc = magic(n);
sum_of_each_line = sum(magc, 2);
sum_of_each_column = sum(magc, 1);

Since we can obtain the result by other means, we have added semi-
colons after each statement to suppress any output. Note the upper-
case S in the function name: for LME, this function is different from
the previous one. To retrieve the results, use the same syntax:

> (sl, sc) = magicSum(3)
sl =
15
15
15

sc =
15 15 15

You do not have to retrieve all the output arguments. To get only the
first one, just type

> sl = magicSum(3)
sl =
15
15
15

When you retrieve only one output argument, you can use it directly
in an expression:

> magicSum(3) + 3
ans =

18
18
18

One of the important benefits of defining function is that the variables
have a limited scope. Using a variable inside the function does not
make it available from the outside; thus, you can use common names
(such as x and y) without worrying about whether they are used in
some other part of your whole program. For instance, let us use one
of the variables of magicSum:

> magc = 77
magc =
77

30 Sysquake Remote ©1999-2016, Calerga Sàrl

> magicSum(3) + magc
ans =

92
92
92

> magc
magc =

77

3.9 Local and Global Variables

When a value is assigned to a variable which has never been refer-
enced, a new variable is created. It is visible only in the current con-
text: the base workspace for assignments made from the command-
line interface, or the current function invocation for functions. The
variable is discarded when the function returns to its caller.

Variables can also be declared to be global, i.e. to survive the end of
the function and to support sharing among several functions and the
base workspace. Global variables are declared with keyword global:

global x
global y z

A global variable is unique if its name is unique, even if it is declared
in several functions.

In the following example, we define functions which implement a
queue which contains scalar numbers. The queue is stored in a global
variable named QUEUE. Elements are added at the front of the vector
with function queueput, and retrieved from the end of the vector with
function queueget.

function queueput(x)
global QUEUE;
QUEUE = [x, QUEUE];

function x = queueget
global QUEUE;
x = QUEUE(end);
QUEUE(end) = [];

Both functions must declare QUEUE as global; otherwise, the variable
would be local, even if there exists also a global variable defined else-
where. The first time a global variable is defined, its value is set to
the empty matrix []. In our case, there is no need to initialized it to
another value.

Here is how these functions can be used.

Tutorial 31

> queueput(1);
> queueget
ans =

1
> queueput(123);
> queueput(2+3j);
> queueget
ans =

123
> queueget
ans =

2 + 3j

To observe the value of QUEUE from the command-line interface, QUEUE
must be declared global there. If a local variable QUEUE already exists,
it is discarded.

> global QUEUE
> QUEUE
QUEUE =

[]
> queueput(25);
> queueput(17);
> QUEUE
QUEUE =

17 25

Chapter 4

Sysquake Remote
Tutorial

Here are commented examples of SQR files for Sysquake Remote. You
can also find them in the directory "examples".

4.1 magic.sqr

For this first example, we shall begin with a very simplified document
without HTML formatting. An improved version with a nice HTML table
will also be proposed.

Simplified version

magic.sqr computes and displays in a table a 5-by-5 magic square
using function magic.

The beginning of the SQR file is plain HTML, without anything spe-
cial, including the tag which begin raw output, <pre>.

<html>
<head>
<title>Sysquake Remote - Basic Output</title>
</head>
<body>
<h1>Sysquake Remote - Basic Output</h1>
<pre>

For computing the magic square and inserting element values in the
cells of the array, we insert executable code between the special tags
<?sqr and ?>. This block of code is executed on the server, and only
its output (what is produced by disp and expressions which do not end
with a semicolon, fprintf to stdout and similar functions, and error

34 Sysquake Remote ©1999-2016, Calerga Sàrl

messages if Sysquake Remote has been configured to display them)
is inserted in the HTML code and sent to the client.

Here, we simply display the magic square computed with magic.

<?sqr
disp(magic(5));
?>

The ?> tag resumes the output of plain HTML. Depending on your
license, you may have to include the Sysquake Remote banner with
function banner, which must be enclosed in a block of executable code
to be interpreted by Sysquake Remote.

<pre>
<?sqr banner ?>
</body>
</html>

Magic square in an HTML table

The beginning of the SQR file is plain HTML, without anything special,
including the tags which begin the table.

<html>
<head>
<title>Magic square with formatted output</title>
</head>
<body bgcolor="#cccccc">
<h1>Magic square with formatted output</h1>

<table border="1" bgcolor="white">

Like in the previous example, computing the magic square is per-
formed in an SQR code fragment with the magic function. However,
instead of displaying immediately its value, we store it in a variable
named M.

<?sqr
M = magic(5);

Then we have a loop for formatting matrix rows.

for i = 1:size(M, 1)

Each row is delimited with <tr> and </tr> tags. Since we are in
executable code, we must use one of the output functions of Sysquake
Remote. Here we use fprintf.

fprintf(’<tr>’);

Sysquake Remote Tutorial 35

Then we use a single fprintf statement for the whole row. The format
string is reused as many times as necessary, which is its normal mode
of operation.

fprintf(’<td align="center">%d</td>’, M(i, :));

The remaining SQR code outputs the end tag for the row and termi-
nates the loop.

fprintf(’</tr>\n’);
end

The ?> tag resumes the output of plain HTML.

?>
</table>

The end of the SQR file is the same as in the first example.

<?sqr banner ?>
</body>
</html>

4.2 Histogram

This new example will permit us to introduce several two important
features: graphics and user input. An histogram of a set of
normally-distributed pseudo-random numbers generated with randn
is displayed as a bar plot.

Graphics

The SQR file begins like any HTML file, until the SQR code fragment.

<html>
<head>
<title>Sysquake Remote - Image</title>
</head>
<body>
<h1>Histogram</h1>
<?sqr

In the code fragment, we set variable xs to a row vector of 1000 ran-
dom numbers. Then we use function hist to get an histogram, i.e. the
numbers of values in some intervals. hist is defined in library stdlib,
which might be imported in all SQR files if Sysquake Remote has been
configured so. But as a precaution, we import it explicitly with the use
command.

36 Sysquake Remote ©1999-2016, Calerga Sàrl

use stdlib;
xs = randn(1, 20000);
(n, x) = hist(xs, -5:0.5:5);

To display the histogram, we use function bar. For simple graphics,
nothing more is required.

bar(x, n);

The end of the SQR file is similar to the one of previous examples.

?>
<?sqr banner ?>
</body>
</html>

Sysquake Remote generates a temporary image file on the server hard
disk and inserts the HTML code required to embed it. Every time the
client reloads the SQR file, a new sequence of random numbers is
generated, giving a slightly different plot.

Compound graphics

When more than a single graphical command is used to produce a
single image, these commands must be enclosed between a pair of
beginfigure/endfigure commands. Otherwise, a different image
would be created for each command. As an example, we add a line
which shows the theoretical probability density. In the previous
example, the line bar(x,n) is replaced with

beginfigure;
bar(x, n);
plot(-5:0.1:5, 20000 * 0.5 * pdf(’normal’, -5:0.1:5), ’c’);
endfigure;

User input

User input can be provided in two different ways: in form controls
(text fields, menus, check boxes, radio buttons or plain buttons), or as
mouse clicks in images. We will first consider the first case, by adding
two text fields to specify the number of random numbers (samples)
and the number of intervals for the histogram and a check box to
enbale or disable the display of the probability density function.

Rather than writing manually the code of the HTML form and using
low-level Sysquake Remote functions to access data sent by the user,
we will the high-level functions defined in library sqr. There are two
functions which both use descriptions of the form, of the data, and
of the relationship between both: displayhtmlform to produce the

Sysquake Remote Tutorial 37

HTML code, and processhtmlform to obtain the user input. These
two functions permit to decide exactly where in the SQR file these
actions are performed, or even to split them into two different SQR
files.

In our case, we will use them in the same SQR file: form elements
are placed below the histogram, and submitting new data retrieves
the same page again with an updated histogram and the form ele-
ments filled with the new values. In order to have these values before
the histogram is created, processhtmlform must be placed at the be-
ginning. If the page is displayed for the first time, just by entering its
URL or following a link from another page, default values are used.
displayhtmlform will be placed below the figure.

The first argument of processhtmlform and displayhtmlform is
a format string, similar to fprintf’s. We want two numbers and a
checkbox with some labels on the same line, followed by a line with a
Reset and a Submit buttons. The string, which we store in a variable
because we use it in two functions, is

format = [’Number of samples: %n\n’, ...
’Number of intervals: %n\n’, ...
’%c Probability density function\n’, ...
’%R %S’];

We use brackets to split the declaration into several lines, but the
result is a plain string. (The SQR code fragment we begin here will
replace the one of the previous example; see below for the complete
SQR file.)

Each variable element corresponds to a field in a structure. The
structure is used as input to provide default values, and as output to
retrieve values. Since elements of structures are orderless, we need
an explicit mapping, provided as a list of field names:

fnames = {’nsamples’, ’nintervals’, ’pdfdisplay’};

The last argument is a structure which contains the default values:

val.nsamples = 20000;
val.nintervals = 20;
val.pdfdisplay = true;

processhtmlform uses these default values if no data has been
posted from the client (typically the first time the page is displayed),
or if some field weren’t found in the posted data (in case the client
forges data). It returns a new structure with the same fields; the
contents of fields found in the posted data are updated. Since we do
not need the initial default values, we reuse the same variable as
input and output.

val = processhtmlform(format, fnames, val);

38 Sysquake Remote ©1999-2016, Calerga Sàrl

Then we can use the fields of val in the computation of the histogram
(we use linspace to generate the intervals):

xs = randn(1, val.nsamples);
intervals = linspace(-5, 5, val.nintervals);
width = intervals(2) - intervals(1);
(n, x) = hist(xs, intervals);
beginfigure;
bar(x, n);
if val.pdfdisplay
plot(-5:0.1:5, val.nsamples * width * pdf(’normal’, -5:0.1:5), ’c’);

end
endfigure;

Below the figure, we display the form with the last values submitted
by the user, which correspond to what is displayed in the figure.

displayhtmlform(format, fnames, val);

The whole SQR file is

<html>
<head>
<title>Histogram</title>
</head>
<body>
<h1>Histogram</h1>
<?sqr
use stdlib, sqr;
format = [’Number of samples: %n\n’, ...

’Number of intervals: %n\n’, ...
’%c Probability density function\n’, ...
’%R %S’];

fnames = {’nsamples’, ’nintervals’, ’pdfdisplay’};
val.nsamples = 20000;
val.nintervals = 20;
val.pdfdisplay = true;
val = processhtmlform(format, fnames, val);
xs = randn(1, val.nsamples);
intervals = linspace(-5, 5, val.nintervals);
width = intervals(2) - intervals(1);
(n, x) = hist(xs, intervals);
beginfigure;
bar(x, n);
if val.pdfdisplay
plot(-5:0.1:5, val.nsamples * width * pdf(’normal’, -5:0.1:5), ’c’);

end
endfigure;
displayhtmlform(format, fnames, val);
banner;
?>

Sysquake Remote Tutorial 39

</body>
</html>

Clickable image

By adding option ’kind’ with value ’interactive’ to beginfigure,
the same page is requested again when the user clicks it and the
position of the click can be retrieved with getclick. getclick gives a
structure whose fields x and y contain the position of the click, in figure
coordinates (pixel coordinates provided by the client are converted
automatically by Sysquake Remote). If the user has not clicked the
image, these fields are not defined, which can be tested with function
isfield.

We make now the histogram example display the numerical value
of the probability distribution function for the x value clicked by the
user.

The line beginfigure; is replaced with

beginfigure(’kind’, ’interactive’);

Below the line endfigure; (but like processhtmlform, we could place
it anywhere in the SQR file), we add the following code:

click = getclick;
if isfield(click, ’x’)
fprintf(’<p>Probability density function at x=%g: %g</p>’, ...

click.x, pdf(’normal’, click.x));
end

4.3 command.sqr

Sysquake Remote can be used to execute arbitrary commands which
are submitted by the client. While this could be insecure if all func-
tions were available, function sandbox executes commands in an envi-
ronment where potentially dangerous commands are disabled. These
commands include those which access files (such as fopen), the net-
work, the shell, and the debugger.

The beginning of the SQR file needs no explanations.

<html>
<head>
<title>Sysquake Remote - Remote Commands</title>
</head>
<body>
<h1> Sysquake Remote - Remote Commands </h1>

40 Sysquake Remote ©1999-2016, Calerga Sàrl

Code evaluated by sandbox can import functions from libraries with
the use command, but it may be more convenient to do it in the SQR
file.

<?sqr
use stdlib, stat, constants, polynom, lti;

We have seen how forms can be managed with the high-level functions
displayhtmlform and processhtmlform. Here, to demonstrate an al-
ternative, we shall use the lower-level httpvars function, which gives
the contents of all form elements in a structure. Fields of the structure
have the same name as those specified in the HTML form. Commands
are written in a form element of type textarea, whose name is cmd.
The first time the SQR page is loaded, no data have been submitted
by the user; httpvars gives an empty structure. In the statements
below, we try to get field cmd anyway; if this fails, we catch the error
in a try/catch block and set variable cmd to a default value, the empty
string.

try
cmd = deblank(httpvars.cmd);

catch
cmd = ’’;

end
?>

The form with the textarea element which permits the user to enter
commands is made of standard HTML tags. The initial contents of the
textarea element is the value of variable cmd, i.e. either empty the
first time the page is loaded, or the previous commands which the
user can edit and submit again. fprintf is used to insert the value of
cmd, whose character which have a special meaning in HTML (<>&")
are converted with htmlspecialchars.

<form method="post">
<table>
<tr><td>
<textarea rows="8" cols="70" name="cmd">
<?sqr fprintf(’%s’,htmlspecialchars(cmd)); ?>

</textarea>
</td></tr>
<tr><td align="right">
<input type="reset" value="Revert">
<input type="submit" value="Execute">

</td></tr>
</table>

</form>

The evaluation of commands is done directly at the place where we
want the results to appear. We enclose the results in a <pre> tag, so
that formatting is preserved. Graphics, if any, will also be displayed.

Sysquake Remote Tutorial 41

<h2>Result</h2>

<pre>
<?sqr
sandbox(cmd)
?>
</pre>

The end of the SQR file is similar to what we have already seen.

<hr>
<?sqr banner ?>
</body>
</html>

Variables as input and output

To predefine variables which could be used by the commands submit-
ted by the client, you can prepend code to define them in front of
them. We shall modify the SQR file to request from a student to enter
the code which computes the mean of a vector a. First, we create a
column vector with 5 random values between 0 and 10, and we display
it.

<?sqr
x = 10 * rand(5, 1);
dumpvar(’x’, x);
?>

Instead of evaluating only what the client has entered, we prepend the
variable definition, and we retrieve all the variables which are defined
in structure var.

<pre>
<?sqr
var = sandbox([dumpvar(’x’, x), cmd]);
?>
</pre>

Fields of var correspond to variables, so we can expect a field var.m
and compare it to the mean of x. If the command is empty, we do not
display anything. The following code does it.

<?sqr
if cmd =̃= ’’
try
m = var.m;
if m === mean(x)
?>

42 Sysquake Remote ©1999-2016, Calerga Sàrl

<p>The mean is correct.</p>
<?sqr

else
?>
<p>Variable <samp>m</samp> is not equal
to the mean of <samp>x</samp>.</p>

<?sqr
end

catch
?>
<p>Variable <samp>m</samp> is not defined.</p>
<?sqr

end
end
?>

An interesting thing to note is the mixing of LME and HTML code: pro-
gramming structures such as if and try can span several fragments
of LME code.

Chapter 5

LME Reference

This chapter describes LME (Lightweight Math Engine), the interpreter
for numeric computing used by Sysquake.

5.1 Program format

Statements

An LME program, or a code fragment typed at a command line, is com-
posed of statements. A statement can be either a simple expression,
a variable assignment, or a programming construct. Statements are
separated by commas, semicolons, or end of lines. The end of line has
the same meaning as a comma, unless the line ends with a semicolon.
When simple expressions and assignments are followed by a comma
(or an end of line), the result is displayed to the standard output; when
they are followed by a semicolon, no output is produced. What follows
programming constructs does not matter.

When typed at the command line, the result of simple expressions
is assigned to the variable ans; this makes easy reusing intermediate
results in successive expressions.

Continuation characters

A statement can span over several lines, provided all the lines but the
last one end with three dots. For example,

1 + ...
2

is equivalent to 1 + 2. After the three dots, the remaining of the line,
as well as empty lines and lines which contain only spaces, are ig-
nored.

44 Sysquake Remote ©1999-2016, Calerga Sàrl

Inside parenthesis or braces, line breaks are permitted even if they
are not escaped by three dots. Inside brackets, line breaks are ma-
trix row separators, like semicolons, unless they follow a comma or a
semicolon where they are ignored.

Comments

Unless when it is part of a string enclosed between single ticks, a
single percent character or two slash characters mark the beginning
of a comment, which continues until the end of the line and is ignored
by LME. Comments must follow continuation characters, if any.

a = 2; % comment at the end of a line
x = 5; // another comment
% comment spanning the whole line
b = ... % comment after the continuation characters

a;
a = 3% no need to put spaces before the percent sign
s = ’%’; % percent characters in a string

Comments may also be enclosed between /* and */; in that case,
they can span several lines.

Pragmas

Pragmas are directives for the LME compiler. They can be placed at
the same location as LME statements, i.e. in separate lines or between
semicolons or commas. They have the following syntax:

_pragma name arguments

where name is the pragma name and arguments are additional data
whose meaning depends on the pragma.

Currently, only one pragma is defined. Pragmas with unknown
names are ignored.

Name Arguments Effect
line n Set the current line number to n

_pragma line 120 sets the current line number as reported by er-
ror messages or used by the debugger or profiler to 120. This can
be useful when the LME source code has been generated by process-
ing another file, and line numbers displayed in error messages should
refer to the original file.

LME Reference 45

5.2 Function Call

Functions are fragments of code which can use input arguments as
parameters and produce output arguments as results. They can be
built in LME (built-in functions), loaded from optional extensions, or
defined with LME statements (user functions).

A function call is the action of executing a function, maybe with
input and/or output arguments. LME supports different syntaxes.

fun
fun()
fun(in1)
fun(in1, in2,...)
out1 = fun...
(out1, out2, ...) = fun...
[out1, out2, ...] = fun...
[out1 out2 ...] = fun...

Input arguments are enclosed between parenthesis. They are passed
to the called function by value, which means that they cannot be mod-
ified by the called function. When a function is called without any input
argument, parenthesis may be omitted.

Output arguments are assigned to variables or part of variables
(structure field, list element, or array element). A single output argu-
ment is specified on the left on an equal character. Several output
arguments must be enclosed between parenthesis or square brackets
(arguments can simply be separated by spaces when they are en-
closed in brackets). Parenthesis and square brackets are equivalent
as far as LME is concerned; parenthesis are preferred in LME code, but
square brackets are available for compatibility with third-party appli-
cations.

Output arguments can be discarded without assigning them to vari-
ables either by providing a shorter list of variables if the arguments to
be discarded are at the end, or by replacing their name with a tilde
character. For example to get the index of the maximum value in a
vector and to discard the value itself:

(̃ , index) = max([2, 1, 5, 3]);

5.3 Named input arguments

Input arguments are usually recognized by their position. Some func-
tions also differentiate them by their data type. This can lead to code
which is difficult to write and to maintain. A third method to distin-
guish the input arguments of a function is to tag them with a name,
with a syntax similar to an assignment. Named arguments must follow
unnamed arguments.

46 Sysquake Remote ©1999-2016, Calerga Sàrl

fun(1, [2,3], dim=2, order=1);

For some functions, named arguments are an alternative to a se-
quence of unnamed arguments.

5.4 Command syntax

When a function has only literal character strings as input arguments,
a simpler syntax can be used. The following conditions must be satis-
fied:

– No output argument.

– Each input argument must be a literal string

– without any space, tabulator, comma or semicolon,

– beginning with a letter, a digit or one of ’-/.:*’ (minus, slash,
dot, colon, or star),

– containing at least one letter or digit.

In that case, the following syntax is accepted; left and right columns
are equivalent.

fun str1 fun(’str1’)
fun str1 str2 fun(’str1’,’str2’)
fun abc,def fun(’abc’),def

Arguments can also be quoted strings; in that case, they may con-
tain spaces, tabulators, commas, semicolons, and escape sequences
beginning with a backslash (see below for a description of the string
data type). Quoted and unquoted arguments can be mixed:

fun ’a bc\n’ fun(’a bc\n’)
fun str1 ’str 2’ fun(’str1’,’str 2’)

The command syntax is especially useful for functions which accept
well-known options represented as strings, such as format loose.

5.5 Libraries

Libraries are collections of user functions, identified in LME by a name.
Typically, they are stored in a file whose name is the library name with
a ".lml" suffix (for instance, library stdlib is stored in file "stdlib.lml").
Before a user function can be called, its library must be loaded with
the use statement. use statements have an effect only in the context
where they are placed, i.e. in a library, or the command-line interface,

LME Reference 47

or a Sysquake SQ file; this way, different libraries may define functions
with the same name provided they are not used in the same context.

In a library, functions can be public or private. Public functions
may be called from any context which use the library, while private
functions are visible only from the library they are defined in.

5.6 Types

Numerical, logical, and character arrays

The basic type of LME is the two-dimensional array, or matrix. Scalar
numbers and row or column vectors are special kinds of matrices. Ar-
rays with more than two dimensions are also supported. All elements
have the same type, which are described in the table below. Two non-
numeric types exist for character arrays and logical (boolean) arrays.
Cell arrays, which contain composite types, are described in a section
below.
Type Description
double 64-bit IEEE number
complex double Two 64-bit IEEE numbers
single 32-bit IEEE number
complex single Two 32-bit IEEE numbers
uint32 32-bit unsigned integer
int32 32-bit signed integer
uint16 16-bit unsigned integer
int16 16-bit signed integer
uint8 8-bit unsigned integer
int8 8-bit signed integer
uint64 64-bit unsigned integer
int64 64-bit signed integer

64-bit integer numbers are not supported by all applications on all
platforms.

These basic types can be used to represent many mathematic ob-
jects:

Scalar One-by-one matrix.

Vector n-by-one or one-by-n matrix. Functions which return vec-
tors usually give a column vector, i.e. n-by-one.

Empty object 0-by-0 matrix (0-by-n or n-by-0 matrices are always
converted to 0-by-0 matrices).

Polynomial of degree d 1-by-(d+1) vector containing the coeffi-
cients of the polynomial of degree d, highest power first.

48 Sysquake Remote ©1999-2016, Calerga Sàrl

List of n polynomials of same degree d n-by-(d+1) matrix con-
taining the coefficients of the polynomials, highest power at left.

List of n roots n-by-1 matrix.

List of n roots for m polynomials of same degree n n-by-m
matrix.

Single index One-by-one matrix.

List of indices Any kind of matrix; the real part of each element
taken row by row is used.

Sets Numerical array, or list or cell array of strings (see below).

Boolean value One-by-one logical array; 0 means false, and any
other value (including nan) means true (comparison and logical
operators and functions return logical values). In programs and
expressions, constant boolean values are entered as false and
true. Scalar boolean values are displayed as false or true; in
arrays, respectively as F or T.

String Usually 1-by-n char array, but any shape of char arrays are
also accepted by most functions.

Unless a conversion function is used explicitly, numbers are repre-
sented by double or complex values. Most mathematical functions ac-
cept as input any type of numeric value and convert them to double;
they return a real or complex value according to their mathematical
definition.

Basic element-wise arithmetic and comparison operators accept di-
rectly integer types ("element-wise" means the operators + - .* ./ .\
and the functions mod and rem, as well as operators * / \ with a scalar
multiplicand or divisor). If their arguments do not have the same type,
they are converted to the size of the largest argument size, in the fol-
lowing order:

double > single > uint64 > int64 > uint32 > int32 > uint16
> int16 > uint8 > int8

Literal two-dimensional arrays are enclosed in brackets. Rows are
separated with semicolons or line breaks, and row elements with com-
mas or spaces. Here are three different ways to write the same 2-by-3
double array.

A = [1, 2, 3; 4, 5, 6];
A = [1 2 3
4 5 6];
A = [1, 2,
3;
4, 5 6];

LME Reference 49

Functions which manipulate arrays (such as reshape which changes
their size or repmat which replicates them) preserve their type.

To convert arrays to numeric, char, or logical arrays, use functions
+ (unary operator), char, or logical respectively. To convert the nu-
meric types, use functions double, single, or uint8 and similar func-
tions.

Numbers

Double and complex numbers are stored as floating-point numbers,
whose finite accuracy depends on the number magnitude. During
computations, round-off errors can accumulate and lead to visible ar-
tifacts; for example, 2-sqrt(2)*sqrt(2), which is mathematically 0,
yields -4.4409e-16. Integers whose absolute value is smaller than
2̂ 52 (about 4.5e15) have an exact representation, though.

Literal double numbers (constant numbers given by their numeric
value) have an optional sign, an integer part, an optional fractional
part following a dot, and an optional exponent. The exponent is the
power of ten which multiplies the number; it is made of the letter ’e’
or ’E’ followed by an optional sign and an integer number. Numbers
too large to be represented by the floating-point format are changed
to plus or minus infinity; too small numbers are changed to 0. Here
are some examples (numbers on the same line are equivalent):

123 +123 123. 123.00 12300e-2
-2.5 -25e-1 -0.25e1 -0.25e+1
0 0.0 -0 1e-99999
inf 1e999999
-inf -1e999999

Literal integer numbers may also be expressed in hexadecimal with
prefix 0x, in octal with prefix 0, or in binary with prefix 0b. The four
literals below all represent 11, stored as double:

0xb
013
0b1011
11

Literal integer numbers stored as integers and literal single numbers
are followed by a suffix to specify their type, such as 2int16 for the
number 2 stored as a two-byte signed number or 0x300uint32 for the
number whose decimal representation is 768 stored as a four-byte un-
signed number. All the integer types are valid, as well as single. This
syntax gives the same result as the call to the corresponding function
(e.g. 2int16 is the same as int16(2)), except when the integer num-
ber cannot be represented with a double; then the number is rounded

50 Sysquake Remote ©1999-2016, Calerga Sàrl

to the nearest value which can be represented with a double. Compare
the expressions below:

Expression Value
uint64(123456789012345678) 123456789012345696
123456789012345678uint64 123456789012345678

Literal complex numbers are written as the sum or difference of
a real number and an imaginary number. Literal imaginary numbers
are written as double numbers with an i or j suffix, like 2i, 3.7e5j, or
0xffj. Functions i and j can also be used when there are no variables
of the same name, but should be avoided for safety reasons.

The suffices for single and imaginary can be combined as isingle
or jsingle, in this order only:

2jsingle
3single + 4isingle

Command format is used to specify how numbers are displayed.

Strings

Strings are stored as arrays (usually row vectors) of 16-bit unsigned
numbers. Literal strings are enclosed in single quotes:

’Example of string’
’’

The second string is empty. For special characters, the following es-
cape sequences are recognized:

Character Escape seq. Character code
Null \0 0
Bell \a 7
Backspace \b 8
Horizontal tab \t 9
Line feed \n 10
Vertical tab \v 11
Form feed \f 12
Carriage return \r 13
Single tick \’ 39
Single tick ’’ (two ’) 39
Backslash \\ 92
Hexadecimal number \xhh hh
Octal number \ooo ooo
16-bit UTF-16 \uhhhh 1 UTF-16 code
21-bit UTF-32 \Uhhhhhhhh 1 or 2 UTF-16 codes

For octal and hexadecimal representations, up to 3 (octal) or 2 (hex-
adecimal) digits are decoded; the first non-octal or non-hexadecimal

LME Reference 51

digit marks the end of the sequence. The null character can conve-
niently be encoded with its octal representation, \0, provided it is not
followed by octal digits (it should be written \000 in that case). It is an
error when another character is found after the backslash. Single ticks
can be represented either by a backslash followed by a single tick, or
by two single ticks.

Depending on the application and the operating system, strings can
contain directly Unicode characters encoded as UTF-8, or MBCS (multi-
byte character sequences). 16-bit characters encoded with \uhhhh
escape sequences are always accepted and handled correctly by all
built-in LME functions (low-level input/output to files and devices which
are byte-oriented is an exception; explicit UTF-8 conversion should be
performed if necessary).

UTF-32 sequences \Uhhhhhhhh assume UTF-16 encoding. In se-
quences \uhhhh and \Uhhhhhhhh, up to 4 or 8 hexadecimal digits
can be provided, respectively, but the first non-hexadecimal character
marks the end of the sequence.

Inline data

For large amounts of text or binary data, the syntax described above
is impractical. Inline data is a special syntax for storing strings as raw
text or uint8 arrays as base64.

Strings (char arrays of dimension 1-by-n) can be defined in the
source code as raw text without any escape sequence with the fol-
lowing syntax:

@/text marker
text
marker

where @/text is that literal sequence of six characters followed or not
by spaces and tabs, marker is an arbitrary sequence of characters
without spaces, tabs or end-of-lines which does not occur in the text,
and text is the text itself. The spaces, tabs and first end-of-line which
follow the first marker are ignored. The last marker must be at the
beginning of a line; this means that the string always ends with an
end-of-line. The whole text inline data is equivalent to a string with
the corresponding characters and can be located in an assignment or
any expression. End-of-line sequences (\n, \r or \r\n) are replaced by
a single linefeed character.

Here is an example of a short fragment of C code, assigned to vari-
able src. The sequence \n is not interpreted as an escape sequence
by LME; it results in the two characters \ and n in src. The trailing
semicolon suppresses the display of the assignment, like in any LME
expression.

52 Sysquake Remote ©1999-2016, Calerga Sàrl

src = @/text"""
int main() {
printf("Hello, data!\n");

}
""";

Arrays of uint8, of dimension n-by-1 (column vectors), can be defined
in the source code in a compact way using the base64 encoding in
inline data:

@/base64 data

where @/base64 is that literal sequence of eight characters, followed
by spaces and/or line breaks, and the data encoded with base64 (see
RFC 2045). The base64-encoded data can contain lowercase and up-
percase letters a-z and A-Z, digits 0-9, and characters / (slash) and +
(plus), and is followed by 0, 1 or 2 characters = (equal) for padding.
Spaces, tabs and line breaks are ignored. Comments are not allowed.

The first character which is not a valid base64 character signals the
end of the inline data and the beginning of the next token of source
code. Inline data can be a part of any expression, assignment or func-
tion call, like any other literal value. In the case where the inline data
is followed by a character which would erroneously be interpreted as
more base64 codes (e.g. neither padding with = nor statement termi-
nator and a keyword at the beginning of the following line), it should
be enclosed in parenthesis.

Inline data can be generated with the base64encode function. For
example, to encode uint8(0:255).’ as inline data, you can evaluate

base64encode(uint8(0:255))

Then copy and paste the result to the source code, for instance as
follows to set a variable d (note how the semicolon will be interpreted
as the delimiter following the inline data, not the data iteself):

d = @/base64
AAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKiss
LS4vMDEyMzQ1Njc4OTo7PD0+P0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZ
WltcXV5fYGFiY2RlZmdoaWprbG1ub3BxcnN0dXZ3eHl6e3x9fn+AgYKDhIWG
h4iJiouMjY6PkJGSk5SVlpeYmZqbnJ2en6ChoqOkpaanqKmqq6ytrq+wsbKz
tLW2t7i5uru8vb6/wMHCw8TFxsfIycrLzM3Oz9DR0tPU1dbX2Nna29zd3t/g
4eLj5OXm5+jp6uvs7e7v8PHy8/T19vf4+fr7/P3+/w== ;

Lists and cell arrays

Lists are ordered sets of other elements. They may be made of any
type, including lists. Literal lists are enclosed in braces; elements are
separated with commas.

LME Reference 53

{1,[3,6;2,9],’abc’,{1,’xx’}}

Lists can be empty:

{}

List’s purpose is to collect any kind of data which can be assigned to
variables or passed as arguments to functions.

Cell arrays are arrays whose elements (or cells) contain data of any
type. They differ from lists only by having more than one dimension.
Most functions which expect lists also accept cell arrays; functions
which expect cell arrays treat lists of n elements as 1-by-n cell arrays.

To create a cell array with 2 dimensions, cells are written between
braces, where rows are separated with semicolons and row elements
with commas:

{1, ’abc’; 27, true}

Since the use of braces without semicolon produces a list, there is no
direct way to create a cell array with a single row, or an empty cell
array. Most of the time, this is not a problem since lists are accepted
where cell arrays are expected. To force the creation of a cell array,
the reshape function can be used:

reshape({’ab’, ’cde’}, 1, 2)

Structures

Like lists and cell arrays, structures are sets of data of any type. While
list elements are ordered but unnamed, structure elements, called
fields, have a name which is used to access them.

There are three ways to make structures: with field assignment
syntax inside braces, with the struct function, or by setting each field
in an assignment. s.f refers to the value of the field named f in the
structure s. Usually, s is the name of a variable; but unless it is in the
left part of an assignment, it can be any expression which evaluates
to a structure.

a = {label = ’A’, position = [2, 3]};

b = struct(name = ’Sysquake’,
os = {’Windows’, ’macOS’, ’Linux’});

c.x = 200;
c.y = 280;
c.radius = 90;

d.s = c;

54 Sysquake Remote ©1999-2016, Calerga Sàrl

With the assignments above, a.os{3} is ’Linux’ and c.s.radius is
90.

While the primary way to access structure fields is by name, field
order is still preserved, as can be seen by displaying the strcture,
getting the field names with fieldnames, or converting the structure
to a cell array with struct2cell. The fields can be reordered with
orderfields.

Structure arrays

While structure fields can contain any type of array and cell arrays
can have structures stored in their cells, structure arrays are arrays
where each element has the same named fields. Plain structures are
structure arrays of size [1,1], like scalar numbers are arrays of size
[1,1].

Values are specified first by indices between parenthesis, then by
field name. Braces are invalid to access elements of structure arrays
(they can be used to access elements of cell arrays stored in structure
array fields).

Structure arrays are created from cell arrays with functions
structarray or cell2struct, or by assigning values to fields.

A = structarray(’name’, {’dog’,’cat’},
’weight’, {[3,100],[3,18]});

B = cell2struct({’dog’,’cat’;[3,100],[3,18]},
{’name’,’weight’});

C(1,1).name = ’dog’;
C(1,1).weight = [3,100];
C(1,2).name = ’cat’;
C(1,2).weight = [3,18];

Column struct arrays (1-dimension) can be defined with field assign-
ments inside braces by separating array elements with semicolons.
Missing fields are set to the empty array [].

D = {a = 1, b = 2; a = 5, b = 3; b = 8};

Value sequences

Value sequences are usually written as values separated with com-
mas. They are used as function input arguments or row elements in
arrays or lists.

When expressions involving lists, cell arrays or structure arrays
evaluate to multiple values, these values are considered as a value
sequence, or part of a value sequence, and used as such in context

LME Reference 55

where value sequences are expected. The number of values can be
known only at execution time, and may be zero.

L = {1, 2};
v = [L{:}]; // convert L to a row vector
c = complex(L{:}); // convert L to a complex number

Value sequences can arise from element access of list or cell arrays
with brace indexing, or from structure arrays with field access with or
without parenthesis indexing.

Function references

Function references are equivalent to the name of a function together
with the context in which they are created. Their main use is as argu-
ment to other functions. They are obtained with operator @.

Inline and anonymous functions

Inline and anonymous functions encapsulate executable code. They
differ only in the way they are created: inline functions are made with
function inline, while anonymous functions have special syntax and
semantics where the values of variables in the current context can be
captured implicitly without being listed as argument. Their main use
is as argument to other functions.

Sets

Sets are represented with numeric arrays of any type (integer, real
or complex double or single, character, or logical), or lists or cell ar-
rays of strings. Members correspond to an element of the array or list.
All set-related functions accept sets with multiple values, which are
always reduced to unique values with function unique. They imple-
ment membership test, union, intersection, difference, and exclusive
or. Numerical sets can be mixed; the result has the same type as when
mixing numeric types in array concatenation. Numerical sets and list
or cell arrays os strings cannot be mixed.

Null

Null stands for the lack of data. It is both a data type and the only
value it can represent. It can be assigned to a variable, be contained
in a list or cell array element or a structure field, or passed as an input
or output argument to/from a function.

Null is a recent addition to LME, where the lack of data is usually
represented by the empty matrix []. It is especially useful when LME

56 Sysquake Remote ©1999-2016, Calerga Sàrl

is interfaced with languages or libraries where the null value has a
special meaning, such as SQL (Structured Query Language, used with
relational databases) or the DOM (Document Object Model, used with
XML).

Objects

Objects are the basis of Object-Oriented Programming (OOP), an ap-
proach of programming which puts the emphasis on encapsulated
data with a known programmatic interface (the objects). Two OOP
languages in common use today are C++ and Java.

The exact definition of OOP varies from person to person. Here is
what it means when it relates to LME:

Data encapsulation Objects contain data, but the data cannot be
accessed directly from the outside. All accesses are performed via
special functions, called methods. What links a particular method
to a particular object is a class. Class are identified with a name.
When an object is created, its class name is specified. The names
of methods able to act on objects of a particular class are prefixed
with the class name followed with two colons. Objects are special
structures whose contents are accessible only to its methods.

Function and operator overloading Methods may have the
same name as regular functions. When LME has to call a function,
it first checks the type of the input arguments. If one of them is an
object, the corresponding method is called, rather than the
function defined for non-object arguments. A method which has
the same name as a function or another method is said to
overload it. User functions as well as built-in ones can be
overloaded. Operators which have a function name (for instance
x+y can also be written plus(x,y)) can also be overloaded.
Special functions, called object constructors, have the same name
as the class and create new objects. They are also methods of the
class, even if their input arguments are not necessarily objects.

Inheritance A class (subclass) may extend the data and methods
of another class (base class or parent). It is said to inherit from the
parent. In LME, objects from a subclass contain in a special field
an object of the parent class; the field name has the same name
as the parent class. If LME does not find a method for an object, it
tries to find one for its parent, great-parent, etc. if any. An object
can also inherit from several parents.

Here is an example of the use of polynom objects, which (as can
be guessed from their name) contain polynomials. Statement use
polynom imports the definitions of methods for class polynom and oth-
ers.

LME Reference 57

use polynom;
p = polynom([1,5,0,1])
p =
x̂ 3+5x̂ 2+1

q = p̂ 2 + 3 * p / polynom([1,0])
q =
x̂ 6+10x̂ 5+25x̂ 4+2x̂ 3+13x̂ 2+15x+1

5.7 Input and Output

LME identifies channels for input and output with non-negative integer
numbers called file descriptors. File descriptors correspond to files,
devices such as serial port, network connections, etc. They are used
as input argument by most functions related to input and output, such
as fprintf for formatted data output or fgets for reading a line of
text.

Note that the description below applies to most LME applications.
For some of them, files, command prompts, or standard input are ir-
relevant or disabled; and standard output does not always correspond
to the screen.

At least four file descriptors are predefined:

Value Input/Output Purpose
0 Input Standard input from keyboard
1 Output Standard output to screen
2 Output Standard error to screen
3 Output Prompt for commands

You can use these file descriptors without calling any opening func-
tion first, and you cannot close them. For instance, to display the value
of π, you can use fprintf:

fprintf(1, ’pi = %.6f\n’, pi);
pi = 3.141593

Some functions use implicitly one of these file descriptors. For in-
stance disp displays a value to file descriptor 1, and warning displays
a warning message to file descriptor 2.

File descriptors for files and devices are obtained with specific func-
tions. For instance fopen is used for reading from or writing to a file.
These functions have as input arguments values which specify what
to open and how (file name, host name on a network, input or output
mode, etc.), and as output argument a file descriptor. Such file de-
scriptors are valid until a call to fclose, which closes the file or the
connection.

58 Sysquake Remote ©1999-2016, Calerga Sàrl

5.8 Error Messages

When an error occurs, the execution is interrupted and an error mes-
sage explaining what happened is displayed, unless the code is en-
closed in a try/catch block. The whole error message can look like

> use stat
> iqr(123)

Index out of range for variable ’M’ (stat/prctile;61)
-> stat/iqr;69

The first line contains an error message, the location in the source
code where the error occurred, and the name of the function or oper-
ator involved. Here stat is the library name, prctile is the function
name, and 61 is the line number in the file which contains the library.
If the function where the error occurs is called itself by another func-
tion, the whole chain of calls is displayed; here, prctile was called by
iqr at line 69 in library stat.

Here is the list of errors which can occur. For some of them, LME
attempts to solve the problem itself, e.g. by allocating more memory
for the task.

Stack overflow Too complex expression, or too many nested func-
tion calls.

Data stack overflow Too large objects on the stack (in expres-
sions or in nested function calls).

Variable overflow Not enough space to store the contents of a
variable.

Code overflow Not enough memory for compiling the program.

Not enough memory Not enough memory for an operation out-
side the LME core.

Algorithm does not converge A numeric algorithm does not con-
verge to a solution, or does not converge quickly enough. This
usually means that the input arguments have invalid values or are
ill-conditioned.

Incompatible size Size of the arguments of an operator or a func-
tion do not agree together.

Bad size Size of the arguments of a function are invalid.

Non-vector array A row or column vector was expected, but a
more general array was found.

LME Reference 59

Not a column vector A column vector was expected, but a more
general array was found.

Not a row vector A row vector was expected, but a more general
array was found.

Non-matrix array A matrix was expected, but an array with more
than 2 dimensions was found.

Non-square matrix A square matrix was expected, but a rectan-
gular matrix was found.

Index out of range Index negative or larger than the size of the
array.

Wrong type String or complex array instead of real, etc.

Non-integer argument An argument has a fractional part while
an integer is required.

Non positive integer argument An argument is not a positive
integer as expected.

Argument out of range An argument is outside the permitted
range of values.

Non-scalar argument An argument is an array while a scalar
number is required.

Non-object argument An object is required as argument.

Not a permutation The argument is not a permutation of the
integers from 1 to n.

Bad argument A numeric argument has the wrong site or the
wrong value.

Unknown option A string option has an invalid value.

Object too large An object has a size larger than some fixed limit.

Undefined variable Attempt to retrieve the contents of a variable
which has not been defined.

Undefined input argument Attempt to retrieve the contents of
an input argument which was neither provided by the caller nor
defined in the function.

Undefined function Attempt to call a function not defined.

Too few or too many input arguments Less or more arguments
in the call than what the function accepts.

60 Sysquake Remote ©1999-2016, Calerga Sàrl

Too few or too many output arguments Less or more left-side
variables in an assignment than the function can return.

Syntax error Unspecified compile-time error.

"function" keyword without function name Incomplete func-
tion header.

Bad function header Syntax error in a function header

Missing expression Statement such as if or while without ex-
pression.

Unexpected expression Statement such as end or else followed
by an expression.

Incomplete expression Additional elements were expected dur-
ing the compilation of an expression, such as right parenthesis or
a sub-expression at the right of an operator.

"for" not followed by a single assignment for is followed by
an expression or an assignment with multiple variables.

Bad variable name The left-hand part of an assignment is not a
valid variable name (e.g. 2=3)

String without right quote The left quote of a string was found,
but the right quote is missing.

Unknown escape character sequence In a string, the backslash
character is not followed by a valid escape sequence.

Unexpected right parenthesis Right parenthesis which does not
match a left parenthesis.

Unexpected right bracket Right bracket which does not match
a left bracket.

Unrecognized or unexpected token An unexpected character
was found during compilation (such as (1+))

"end" not in an index expression end was used outside of any
index sub-expression in an expression.

"beginning" not in an index expression beginning was used
outside of any index sub-expression in an expression.

"matrixcol" not in an index expression matrixcol was used
outside of any index sub-expression in an expression.

"matrixrow" not in an index expression matrixrow was used
outside of any index sub-expression in an expression.

LME Reference 61

"matrixrow" or "matrixcol" used in the wrong index
matrixrow was used in an index which was not the first one, or
matrixcol was used in an index which was not the only one or
the second one.

Compilation overflow Not enough memory during compilation.

Too many nested subexpressions The number of nested of
subexpressions is too high.

Variable table overflow A single statement attempts to define
too many new variables at once.

Expression too large Not enough memory to compile a large ex-
pression.

Too many nested (), [] and {} The maximum depth of nested
subexpressions, function argument lists, arrays and lists is
reached.

Too many nested programming constructs Not enough mem-
ory to compile that many nested programming constructs such as
if, while, switch, etc.

Wrong number of input arguments Too few or too many input
arguments for a built-in function during compilation.

Wrong number of output arguments Too few or too many out-
put arguments for a built-in function during compilation.

Too many indices More than two indices for a variable.

Variable not found A variable is referenced, but appears neither
in the arguments of the function nor in the left part of an assign-
ment.

Unbounded language construct if, while, for, switch, or try
without end.

Unexpected "end" The end statement does not match an if,
switch, while, for, or catch block.

"case" or "otherwise" without "switch" The case or otherwise
statement is not inside a switch block.

"catch" without "try" The catch statement does not match a try
block.

"break" or "continue" not in a loop The break or continue
statement is not inside a while or for block.

62 Sysquake Remote ©1999-2016, Calerga Sàrl

Variable name reused Same variable used twice as input or as
output argument.

Too many user functions Not enough memory for that many user
functions.

Attempt to redefine a function A function with the same name
already exists.

Can’t find function definition Cannot find a function definition
during compilation.

Unexpected end of expression Missing right parenthesis or
square bracket.

Unexpected statement Expression expected, but a statement is
found (e.g. if).

Null name Name without any character (when given as a string in
functions like feval and struct).

Name too long More than 32 characters in a variable or function
name.

Unexpected function header A function header (keyword "func-
tion") has been found in an invalid place, for example in the argu-
ment of eval.

Function header expected A function header was expected but
not found.

Bad variable in the left part of an assignment The left part of
an assignment does not contain a variable, a structure field, a list
element, or the part of an array which can be assigned to.

Bad variable in a for loop The left part of the assignment of a
for loop is not a variable.

Source code not found The source code of a function is not avail-
able.

File not found fopen does not find the file specified.

Bad file ID I/O function with a file descriptor which neither is stan-
dard nor corresponds to an open file or device.

Cannot write to file Attempt to write to a read-only file.

Bad seek Seek out of range or attempted on a stream file.

Too many open files Attempt to open too many files.

End of file Attempt to read data past the end of a file.

LME Reference 63

Timeout Input or output did not succeed before a too large amount
of time elapsed.

No more OS memory The operating system cannot allocate more
memory.

Bad context Call of a function when it should not (application-
dependent).

Not supported The feature is not supported, at least in the current
version.

5.9 Character Set

There exist different standards to represent characters. In LME, char-
acters are stored as 16-bit unsigned integer numbers. The mapping
between these codes and the actual characters they represent de-
pends on the application and the operating system. Currently, on ma-
cOS, Windows and Linux, Sysquake uses the UTF-16 character encod-
ing (i.e. Unicode characters encoded in one or two 16-bit words).

To make the exchange of files possible without manual conversion,
all text files used by LME applications can have their character set
specified explicitly. In Sysquake, this includes library files (.lml), SQ
files (.sq), and SQ data files (.sqd). Versions of Sysquake using Unicode
(currently macOS and Linux) convert automatically files with a charset
specification.

The character set specification is a comment line with the following
format:

// charset=charsetname
or
% charset=charsetname
Spaces between the comment mark and the keyword charset are

ignored. The comment line must be the first or the second line of the
text file. The character set charsetname must be one of the following:

ascii or usascii ASCII
utf-8 or utf8 UTF-8 (unicode)
iso-8859-1 or iso-latin-1 ISO-Latin-1 (Windows 1252)
macintosh or macosroman Mac OS Classic

Here are advices about the use of character set specifications, both
for the current transition phase where Sysquake for Windows does not
use Unicode and for the future.

If you need only ASCII (typically because you work in English, or for
files without text or where unaccented letters are acceptable), do not
add any character set specification (ASCII is a subset of all supported

64 Sysquake Remote ©1999-2016, Calerga Sàrl

character sets) or add charset=ascii as an indication that the file
should contain only 7-bit characters.

If you need accented characters found in western European lan-
guages, use ISO-8859-1 with an explicit character set specification on
Windows and other platforms if you need cross-platform compatibility,
or any character set with a character set specification otherwise.

If you need another native character set on Windows, do not add
any character set specification, and switch to UTF-8 as soon as a uni-
code version of Sysquake becomes available.

5.10 List of Commands, Functions, and
Operators

Programming keywords

break
case
catch
clear
continue
define
endfunction
else
elseif
error

for
function
global
hideimplementation
if
otherwise
persistent
private
public
repeat

rethrow
return
switch
try
until
use
useifexists
while

Programming operators and functions

assert
Variable assignment
Operator ()
Operator @
builtin
deal
dumpvar
eval
feval
fevalx

fun2str
inline
isdefined
isfun
isglobal
lasterr
lasterror
namedargin
nargin
nargout

sandbox
sandboxtrust
str2fun
str2obj
subsasgn
subsref
varargin
varargout

LME Reference 65

Platform

exist
help
info
inmem

iskeyword
ismac
ispc
isunix

lookfor
variables
which

Arrays

[]
,
;
:
arrayfun
beginning
cat
diag
end
eye
find
flipdim
fliplr
flipud
ind2sub

inthist
ipermute
isempty
length
linspace
logspace
magic
matrixcol
matrixrow
meshgrid
ndgrid
ndims
nnz
numel
ones

permute
rand
randi
randn
repmat
reshape
rng
rot90
size
sort
squeeze
sub2ind
unique
unwrap
zeros

Strings

base32decode
base32encode
base64decode
base64encode
char
deblank
ischar
isdigit
isempty
isletter
isspace

latex2mathml
length
lower
mathml
mathmlpoly
setstr
split
sprintf
sscanf
strcmp
strcmpi

strfind
strmatch
strrep
strtok
strtrim
unicodeclass
upper
utf32decode
utf32encode
utf8decode
utf8encode

66 Sysquake Remote ©1999-2016, Calerga Sàrl

Hash

hmac
md5

sha1
sha1

Lists

{}
apply
join
isempty

islist
length
list2num
map

num2list
replist

Cell arrays

cell
cellfun

iscell
num2cell

Structures and structure arrays

cell2struct
cellfun
fieldnames
getfield
isfield

isstruct
orderfields
rmfield
setfield
struct

struct2cell
structarray
structmerge

Null value

isnull null

LME Reference 67

Objects

class
inferiorto
isa

isobject
methods
superclasses

superiorto

Logical operators

==
===
=̃
=̃=
<

>
<=
>=
˜
&

|
&&
||
?

Logical functions

all
any
false
find
ischar
iscolumn
isdigit
isempty
isequal

isfinite
isfloat
isinf
isinteger
isletter
islogical
ismatrix
isnan
isnumeric

isprime
isrow
isscalar
isspace
isvector
logical
true
xor

Bitwise functions

bitall
bitand
bitany
bitcmp

bitget
bitor
bitset
bitshift

bitxor
graycode
igraycode

68 Sysquake Remote ©1999-2016, Calerga Sàrl

Integer functions

int8
int16
int32

int64
map2int
uint8

uint16
uint32
uint64

Set functions

intersect
ismember

setdiff
setxor

union
unique

Constants

eps
false
flintmax
goldenratio
i

inf
intmax
intmin
j
nan

pi
realmax
realmin
true

Arithmetic functions

+
-
*
.*
/
./

\
.\
ˆ
.̂
cumprod
cumsum

diff
kron
mod
prod
rem
sum

LME Reference 69

Trigonometric functions in radians

acos
acot
acsc
asec
asin

atan
atan2
cos
cot
csc

sec
sin
tan

Trigonometric functions in degrees

acosd
acotd
acscd
asecd
asind

atand
atan2d
cosd
cotd
cscd

secd
sind
tand

Hyperbolic functions

acosh
acoth
acsch
asech

asinh
atanh
cosh
coth

csch
sech
sinh
tanh

70 Sysquake Remote ©1999-2016, Calerga Sàrl

Other scalar math functions

abs
angle
beta
betainc
betaln
conj
diln
ellipam
ellipe
ellipf
ellipj
ellipke
erf
erfc

erfcinv
erfcx
erfinv
exp
expm1
factor
factorial
gamma
gammainc
gammaln
gcd
hypot
imag
lcm

log
log10
log1p
log2
nchoosek
nthroot
rat
real
reallog
realpow
realsqrt
sign
sinc
sqrt

Type conversion functions

cast
ceil
complex
double

fix
floor
round
roundn

single
swapbytes
typecast

Matrix math functions

’
.’
balance
care
chol
cond
conv2
dare
det
dlyap
eig
expm

fft
funm
hess
householder
householderapply
ifft
inv
linprog
logm
lu
lyap
norm

null
orth
pinv
qr
rank
schur
sqrtm
svd
trace
tril
triu

LME Reference 71

Geometry functions

cart2pol
cart2sph

cross
dot

pol2cart
sph2cart

Probability distribution functions

cdf
icdf

pdf
random

Statistic functions

cov
cummax
cummin
kurtosis

max
mean
median
min

moment
skewness
std
var

Polynomial math functions

addpol
conv
deconv

filter
poly
polyder

polyint
polyval
roots

Interpolation and triangulation functions

delaunay
delaunayn
griddata
griddatan

interp1
interpn
tsearch
tsearchn

voronoi
voronoin

72 Sysquake Remote ©1999-2016, Calerga Sàrl

Quaternion operators

,
;
==
=̃
+
-

*
.*
/
./
\
.\

ˆ
.̂
’
.’

Quaternion math functions

abs
conj
cos
cumsum
diff
exp
log
mean

q2mat
q2rpy
q2str
qimag
qinv
qnorm
qslerp
quaternion

real
rpy2q
sign
sin
sqrt
sum

Other quaternion functions

beginning
cat
char
disp
dumpvar
double
end
flipdim

fliplr
flipud
ipermute
isempty
isquaternion
length
ndims
numel

permute
repmat
reshape
rot90
size
squeeze
subsasgn
subsref

LME Reference 73

Non-linear numerical functions

fminbnd
fminsearch
fsolve
fzero

integral
lsqcurvefit
lsqnonlin
ode23

ode45
odeset
optimset

Dynamical systems functions

c2dm
d2cm
dmargin

margin
ss2tf
tf2ss

zp2ss

Input/output

bwrite
disp
error
fclose
feof
fgetl
fgets
fionread

format
fprintf
fread
frewind
fscanf
fseek
ftell
fwrite

redirect
sprintf
sread
sscanf
swrite
warning

Files

fopen

Path manipulation

fileparts filesep fullfile

74 Sysquake Remote ©1999-2016, Calerga Sàrl

XML

getElementById
getElementsByTagName
saxcurrentline
saxcurrentpos

saxnew
saxnext
saxrelease
xmlread

xmlreadstring
xmlrelease

Basic graphics

activeregion
altscale
area
bar
barh
circle
colormap
contour
figurestyle
fontset

fplot
image
label
legend
line
math
pcolor
plot
plotoption
plotset

polar
quiver
scale
scalefactor
subplotstyle
text
tickformat
ticks
title

Graphics for dynamical systems

bodemag
bodephase
dbodemag
dbodephase
dimpulse
dinitial
dlsim
dnichols
dnyquist

dsigma
dstep
erlocus
hgrid
hstep
impulse
initial
lsim
ngrid

nichols
nyquist
plotroots
rlocus
sgrid
sigma
step
zgrid

Data compression

deflate inflate

LME Reference — variables 75

Image input/output

imageread imageset imagewrite

Date and time

cal2julian
clock

julian2cal
posixtime

tic
toc

Unix

cd
cputime

getenv
pwd

sleep
unix

Sysquake Remote

beginfigure
endfigure
figurelist
getclick

htmlspecialchars
http
httpheader
httpvars

urldecode
urlencode

5.11 Variable Assignment and Subscript-
ing

Variable assignment

Assignment to a variable or to some elements of a matrix variable.

Syntax
var = expr
(var1, var2, ...) = function(...)

76 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
var = expr assigns the result of the expression expr to the variable
var. When the expression is a naked function call, (var1,var2,...)
= function(...) assigns the value of the output arguments of the
function to the different variables. Usually, providing less variables
than the function can provide just discards the superfluous output
arguments; however, the function can also choose to perform in a
different way (an example of such a function is size, which returns
the number of rows and the number of columns of a matrix either as
two numbers if there are two output arguments, or as a 1-by-2 vector
if there is a single output argument). Providing more variables than
what the function can provide is an error.

Variables can store any kind of contents dynamically: the size and
type can change from assignment to assignment.

A subpart of a matrix variable can be replaced with the use of
parenthesis. In this case, the size of the variable is expanded when
required; padding elements are 0 for numeric arrays and empty ar-
rays [] for cell arrays and lists.

See also
Operator (), operator {}, clear, exist, for, subsasgn

beginning

First index of an array.

Syntax
v(...beginning...)
A(...beginning...)
function e = C::beginning(obj, i, n)

Description
In an expression used as an index to access some elements of an
array, beginning gives the index of the first element (line or column,
depending of the context). It is always 1 for native arrays.

beginning can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::beginning(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where beginning is used, and n is the total number of index
expressions.

See also
Operator (), operator {}, beginning, end, matrixcol, matrixrow

LME Reference — variables 77

end

Last index of an array.

Syntax
v(...end...)
A(...end...)
function e = C::end(obj, i, n)

Description
In an expression used as an index to access some elements of an ar-
ray, end gives the index of the last element (line or column, depending
of the context).

end can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::end(obj,i,n), where C is the name of the class, obj is the
object to be indexed, i is the position of the index expression where
end is used, n is the total number of index expressions.

Examples
Last 2 elements of a vector:

a = 1:5; a(end-1:end)
4 5

Assignment to the last element of a vector:

a(end) = 99
a =
1 2 3 4 99

Extension of a vector:

a(end + 1) = 100
a =
1 2 3 4 99 100

See also
Operator (), operator {}, size, length, beginning, matrixcol,
matrixrow

global persistent

Declaration of global or persistent variables.

78 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
global x y ...
persistent x y ...

Description
By default, all variables are local and created the first time they are
assigned to. Local variables can be accessed only from the body of the
function where they are defined, but not by any other function, even
the ones they call. They are deleted when the function exits. If the
function is called recursively (i.e. if it calls itself, directly or indirectly),
distinct variables are defined for each call. Similarly, local variables
defined in the workspace using the command-line interface cannot be
referred to in functions.

On the other hand, global variables can be accessed by multiple
functions and continue to exist even after the function which cre-
ated them exits. Global variables must be declared with global in
each function which uses them. They can also be declared in the
workspace. There exists only a single variable for each different name.

Declaring a global variable has the following result:

– If a previous local variable with the same name exists, it is
deleted.

– If the global variable does not exist, it is created and initialized
with the empty array [].

– Every access which follows the declaration in the same function
or workspace uses the global variable.

Like global variables, persistent variables are preserved between func-
tion calls; but they cannot be shared between different functions. They
are declared with persistent. They cannot be declared outside a
function. Different persistent variables can have the same name in
different functions.

Examples
Functions to reset and increment a counter:

function reset
global counter;
counter = 0;

function value = increment
global counter;
counter = counter + 1;
value = counter;

LME Reference — variables 79

Here is how the counter can be used:

reset;
i = increment
i =
1

j = increment
j =
2

See also
function

matrixcol

First index in a subscript expression.

Syntax
A(...matrixcol...)
function e = C::matrixcol(obj, i, n)

Description
In an expression used as a single subscript to access some elements
of an array A(expr), matrixcol gives an array of the same size as
A where each element is the column index. For instance for a 2-by-3
matrix, matrixcol gives the 2-by-3 matrix [1,2,3;1,2,3].

In an expression used as the second of multiple subscripts to
access some elements of an array A(...,expr) or A(...,expr,...),
matrixcol gives a row vector of length size(A,2) whose elements
are the indices of each column. It is equivalent to the range
(beginning:end).

matrixcol is useful in boolean expressions to select some ele-
ments of an array.

matrixcol can be overloaded for objects of used-defined
classes. Its definition should have a header equivalent to function
e=C::matrixcol(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixcol is used, and n is the total number of index
expressions.

Example
Set to 0 the NaN values which are not in the first column:

80 Sysquake Remote ©1999-2016, Calerga Sàrl

A = [1, nan, 5; nan, 7, 2; 3, 1, 2];
A(matrixcol > 1 & isnan(A)) = 0
A =

1 0 5
nan 7 2
3 1 2

See also
matrixrow, beginning, end

matrixrow

First index in a subscript expression.

Syntax
A(...matrixrow...)
function e = C::matrixrow(obj, i, n)

Description
In an expression used as a single subscript to access some elements
of an array A(expr), matrixrow gives an array of the same size as A
where each element is the row index. For instance for a 2-by-3 matrix,
matrixrow gives the 2-by-3 matrix [1,1,1;2,2,2].

In an expression used as the first of multiple subscripts to access
some elements of an array A(expr,...), matrixrow gives a row vec-
tor of length size(A,1) whose elements are the indices of each row.
It is equivalent to the range (beginning:end).

matrixrow is useful in boolean expressions to select some ele-
ments of an array.

matrixrow can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::matrixrow(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixrow is used, and n is the total number of index
expressions.

See also
matrixcol, beginning, end

subsasgn

Assignment to a part of an array, list, or structure.

LME Reference — variables 81

Syntax
A = subsasgn(A, s, B)

Description
When an assignment is made to a subscripted part of an object in a
statement like A(s1,s2,...)=B, LME executes A=subsasgn(A,s,B),
where subsasgn is a method of the class of variable A and s is a struc-
ture with two fields: s.type which is ’()’, and s.subs which is the
list of subscripts {s1,s2,...}. If a subscript is the colon character
which stands for all elements along the corresponding dimensions, it
is represented with the string ’:’ in s.subs.

When an assignment is made to a subscripted part of an object
in a statement like A{s}=B, LME executes A=subsasgn(A,s,B), where
subsasgn is a method of the class of variable A and s is a structure
with two fields: s.type which is ’{}’, and s.subs which is the list
containing the single subscript {s}.

When an assignment is made to the field of an object in a statement
like A.f=B, LME executes A=subsasgn(A,s,B), where s is a structure
with two fields: s.type which is ’.’, and s.subs which is the name of
the field (’f’ in this case).

While the primary purpose of subsasgn is to permit the use of sub-
scripts with objects, a built-in implementation of subsasgn is provided
for arrays when s.type is ’()’, for lists and cell arrays when s.type
is a list or a cell array, and for structures when s.type is ’.’. In that
case, the second argument s can be reduced to the list of subscripts
or the field name; and a single subscripts can be given directly instead
of a list of length 1.

Examples
A = [1,2;3,4];
subsasgn(A, {type=’()’,subs={1,’:’}}, 999)
999 999
3 4

subsasgn(A, {type=’()’,subs={’:’,1}}, [])
2
4

Same result when the indices are given directly as the second argu-
ment:

subsasgn(A, {1,’:’}, 999)
999 999
3 4

s = {a=2, b=1:5};
subsasgn(s, ’b’, ’abc’)
a: 2
b: ’abc’

82 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
Operator (), operator {}, subsref, beginning, end

subsref

Reference to a part of an array, list, or structure.

Syntax
B = subsref(A, s)

Description
When an object variable is subscripted in an expression like
A(s1,s2,...), LME evaluates subsref(A,s), where subsref is a
method of the class of variable A and s is a structure with two fields:
s.type which is ’()’, and s.subs which is the list of subscripts
{s1,s2,...}. If a subscript is the colon character which stands for all
elements along the corresponding dimensions, it is represented with
the string ’:’ in s.subs.

When an object variable is subscripted in an expression like A{s},
LME evaluates subsref(A,s), where subsref is a method of the class
of variable A and s is a structure with two fields: s.type which is ’{}’,
and s.subs which is the list containing the single subscript {s}.

When the field of an object variable is retrieved in an expression
like A.f, LME executes subsref(A,s), where s is a structure with two
fields: s.type which is ’.’, and s.subs which is the name of the field
(’f’ in this case).

While the primary purpose of subsref is to permit the use of sub-
scripts with objects, a built-in implementation of subsref is provided
for arrays when s.type is ’()’, for lists when s.type is ’{}’, and for
structures when s.type is ’.’. In that case, the second argument s
can be reduced to the list of subscripts or the field name; and a single
subscripts can be given directly instead of a list of length 1.

Examples
A = [1,2;3,4];
subsref(A, {type=’()’,subs={1,’:’}})
1 2

Same result when the indices are given directly as the second argu-
ment:

subsref(A, {1,’:’})
1 2

s = {a=’abc’, b=1:5};
subsref(s, ’b’)
1 2 3 4 5

LME Reference — programming constructs 83

See also
Operator (), operator {}, subsasgn, beginning, end

5.12 Programming Constructs

Programming constructs are the backbone of any LME program. Ex-
cept for the variable assignment, all of them use reserved keywords
which may not be used to name variables or functions. In addition to
the constructs described below, the following keywords are reserved
for future use:
classdef
goto

parfor
spmd

break

Terminate loop immediately.

Syntax
break

Description
When a break statement is executed in the scope of a loop construct
(while, repeat or for), the loop is terminated. Execution continues
at the statement which follows end. Only the innermost loop where
break is located is terminated.

The loop must be in the same function as break. It is an error to
execute break outside any loop.

See also
while, repeat, for, continue, return

case

Conditional execution of statements depending on a number or a
string.

See also
switch, otherwise

84 Sysquake Remote ©1999-2016, Calerga Sàrl

catch

Error recovery.

See also
try

continue

Continue loop from beginning.

Syntax
continue

Description
When a continue statement is executed in the scope of a loop con-
struct (while, repeat or for), statements following continue are ig-
nored and a new loop is performed if the loop termination criterion is
not fulfilled.

The loop must be in the same function as continue. It is an error
to execute continue outside any loop.

See also
while, repeat, for, break

define

Definition of a constant.

Syntax
define c = expr
define c = expr;

Description
define c=expr assign permanently expression expr to c. It is equiv-
alent to

function y = c
y = expr;

Since c does not have any input argument, the expression is usually
constant. A semicolon may follow the definition, but it does not have
any effect. define must be the first element of the line (spaces and
comments are skipped).

LME Reference — programming constructs 85

Examples
define e = exp(1);
define g = 9.81;
define c = 299792458;
define G = 6.672659e-11;

See also
function

for

Loop controlled by a variable which takes successively the value of the
elements of a vector or a list.

Syntax
for v = vect

s1
...

end

for v = list
s1
...

end

Description
The statements between the for statement and the corresponding
end are executed repeatedly with the control variable v taking succes-
sively every column of vect or every element of list list. Typically,
vect is a row vector defined with the range operator.

You can change the value of the control variable in the loop; how-
ever, next time the loop is repeated, that value is discarded and the
next column of vect is fetched.

Examples
for i = 1:3; i, end
i =
1

i =
2

i =
3

for i = (1:3)’; i, end
i =
1

86 Sysquake Remote ©1999-2016, Calerga Sàrl

2
3

for i = 1:2:5; end; i
i =
5

for i = 1:3; break; end; i
i =
1

for el = {1,’abc’,{2,5}}; el, end
el =
1

el =
abc

el =
{2,5}

See also

while, repeat, break, continue, variable assignment

function endfunction

Definition of a function, operator, or method.

Syntax
function f

statements

function f(x1, x2, ...)
statements

function f(x1, x2 = expr2, ...)
statements

function y = f(x1, x2, ...)
statements

function (y1,y2,...) = f(x1,x2,...)
statements

function ... class::method ...
statements

function ...
statements

endfunction

LME Reference — programming constructs 87

Description

New functions can be written to extend the capabilities of LME. They
begin with a line containing the keyword function, followed by the
list of output arguments (if any), the function name, and the list of
input arguments between parenthesis (if any). The output arguments
must be enclosed between parenthesis or square brackets if they are
several. One or more variable can be shared in the list of input and
output arguments. When the execution of the function terminates (ei-
ther after the last statement or because of the command return), the
current value of the output arguments, as set by the function’s state-
ments, is given back to the caller. All variables used in the function’s
statements are local; their value is undefined before the first assign-
ment (and it is illegal to use them in an expression), and is not shared
with variables in other functions or with recursive calls of the same
function. Different kinds of variables can be declared explicitly with
global and persistent.

When multiple functions are defined in the same code source (for
instance in a library), the body of a function spans from its header
to the next function or until the endfunction keyword, whichever
comes first. Function definitions cannot be nested. endfunction is
required only when the function definition is followed by code to be
executed outside the scope of any function. This includes mixed code
and function definitions entered in one large entry in a command-
line interface, or applications where code is mainly provided as state-
ments, but where function definitions can help and separate libraries
are not wished (note that libraries cannot contain code outside func-
tion definitions; they do not require endfunction). Both function
and endfunction appear usually at the beginning of a line, but are
also permitted after a semicolon or a comma.

Variable number of arguments

Not all of the input and output arguments are necessarily specified
by the caller. The caller fixes the number of input and output argu-
ments, which can be obtained by the called function with nargin and
nargout, respectively. Unspecified input arguments (from nargin+1
to the last one) are undefined, unless a default value is provided in
the function definition: with the definition function f(x,y=2), y is 2
when f is called with a single input argument. Unused output argu-
ments (from nargout+1 to the last one) do not have to be set, but may
be.

Functions which accept an unspecified number of input and/or out-
put arguments can use the special variables varargin and varargout,
which are lists of values corresponding to remaining input and output
arguments, respectively.

88 Sysquake Remote ©1999-2016, Calerga Sàrl

Named arguments
The caller can pass some or all of the input arguments by name, such
as f(x=2). Named arguments must follow unnamed ones. Their or-
der does not have to match the order of the input arguments in the
function declaration, and some arguments can be missing. Missing
arguments are set to their default value if it exists, or left undefined.
Undefined arguments can be detected with isdefined, or the error
caused by their use caught by try.

Functions which accept unspecified named arguments or which do
not want to expose the argument names used in their implementation
can use the special variable namedargin, which is a structure contain-
ing all named arguments passed by the caller.

Unused arguments
Character ˜ stands for an unused argument. It can be used as a place-
holder for an input argument name in the function definition, or in the
list of output arguments specified for the function call.

If function f is defined with function header function f(x,̃), it ac-
cepts two input arguments, the first one assigned to x and the second
one discarded. This can be useful if f is called by code which expects
a function with two input arguments.

In (a,̃ ,c)=f, function f is called to provide three output arguments
(nargout==3), but the second output argument is discarded.

Operator overloading
To redefine an operator (which is especially useful for object methods;
see below), use the equivalent function, such as plus for operator +.
The complete list is given in the section about operators.

To define a method which is executed when one of the input argu-
ments is an object of class class (or a child in the classes hierarchy),
add class:: before the method (function) name. To call it, use only
the method name, not the class name.

Examples
Function with optional input and output arguments:

function (Sum, Prod) = calcSumAndProd(x, y)
if nargout == 0
return; % nothing to be computed

end
if nargin == 0 % make something to be computed...
x = 0;

end
if nargin <= 1 % sum of elements of x
Sum = sum(x);

LME Reference — programming constructs 89

else % sum of x and y
Sum = x + y;

end
if nargout == 2 % also compute the product
if nargin == 1 % product of elements of x
Prod = prod(x);

else % product of x and y
Prod = x .* y;

end
end

Two equivalent definitions:

function S = area(a, b = a, ellipse = false)
S = ellipse ? pi * a * b / 4 : a * b;

function S = area(a, b, ellipse)
if ĩsdefined(b)

b = a;
end
if ĩsdefined(ellipse)

ellipse = false;
end
S = ellipse ? pi * a * b / 4 : a * b;

With unnamed arguments only, area can be called with values for a
only, a and b, or a, b and ellipse. By naming ellipse, the second
argument can be omitted:

S = area(2, ellipse=true)
S =
3.1416

Function max can return the index of the maximum value in a vector.
In the following call, the maximum itself is discarded.

(̃ , maxIndex) = max([2,7,3,5])
maxIndex =
2

See also
return, nargin, nargout, isdefined, varargin, varargout,
namedargin, define, inline, global, persistent

hideimplementation

Hide the implementation of remaining functions in a library.

90 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
hideimplementation

Description
In a library, functions which are defined after the hideimplementation
keyword have their implementation hidden: for errors occuring when
they are executed, the error message is the same as if the function
was a native function (it does not contain information about the er-
ror location in the function or subfunctions), and during debugging,
dbstep in steps over the function call.

hideimplementation may not be placed in the same line of source
code as any other command (comments are possible, though).

See also
public, private, function, use, error, dbstep

if elseif else end

Conditional execution depending on the value of one or more boolean
expressions.

Syntax
if expr

s1
...

end

if expr
s1
...

else
s2
...

end

if expr1
s1
...

elseif expr2
s2
...

else
s3
...

end

LME Reference — programming constructs 91

Description
If the expression following if is true (nonempty and all elements dif-
ferent from 0 and false), the statements which follow are executed.
Otherwise, the expressions following elseif are evaluated, until one
of them is true. If all expressions are false, the statements following
else are executed. Both elseif and else are optional.

Example
if x > 2
disp(’large’);

elseif x > 1
disp(’medium’);

else
disp(’small’);

end

See also
switch, while

include

Include libraries.

Syntax
include lib

Description
include lib inserts the contents of the library file lib. Its effect is
similar to the use statement, except that the functions and constants
in lib are defined in the same context as the library where include
is located. Its main purpose is to permit to define large libraries in
multiple files in a transparent way for the user. include statements
must not follow other statements on the same line, and can reference
only one library which is searched at the same locations as use. They
can be used only in libraries.

Since LME replaces include with the contents of lib, one should
be cautious about the public or private context which is preserved
between the libraries. It is possible to include a fragment of function
without a function header.

See also
use, includeifexists, private, public

92 Sysquake Remote ©1999-2016, Calerga Sàrl

includeifexists

Include library if it exists.

Syntax
includeifexists lib

Description
includeifexists lib inserts the contents of the library file lib if it
exists; if the library does not exists, it does nothing.

See also
include, useifexists, private, public

otherwise

Conditional execution of statements depending on a number or a
string.

See also
switch, case

private

Mark the beginning of a sequence of private function definitions in a
library.

Syntax
private

Description
In a library, functions which are defined after the private keyword are
private. private may not be placed in the same line of source code
as any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default.

LME Reference — programming constructs 93

Example
Here is a library for computing the roots of a second-order polynomial.
Only function roots2 can be called from the outside of the library.

private
function d = discr(a, b, c)
d = b̂ 2 - 4 * a * c;

public
function r = roots2(p)
a = p(1);
b = p(2);
c = p(3);
d = discr(a, b, c);
r = [-b+sqrt(d); -b-sqrt(d)] / (2 * a);

See also
public, function, use

public

Mark the beginning of a sequence of public function definitions in a
library.

Syntax
public

Description
In a library, functions which are defined after the public keyword are
public. public may not be placed in the same line of source code as
any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default: the public keyword
is not required at the beginning of the library.

See also
private, function, use

repeat

Loop controlled by a boolean expression.

94 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
repeat

s1
...

until expr

Description
The statements between the repeat statement and the corresponding
until are executed repeatedly (at least once) until the expression of
the until statement yields true (nonempty and all elements different
from 0 and false).

Example
v = [];
repeat
v = [v, sum(v)+1];

until v(end) > 100;
v

1 2 4 8 16 32 64 128

See also
while, for, break, continue

return

Early return from a function.

Syntax
return

Description
return stops the execution of the current function and returns to the
calling function. The current value of the output arguments, if any,
is returned. return can be used in any control structure, such as if,
while, or try, or at the top level.

Example
function dispFactTable(n)
% display the table of factorials from 1 to n
if n == 0
return; % nothing to display

end
fwrite(’ i i!\n’);
for i = 1:n
fwrite(’%2d %3d\n’, i, prod(1:i));

end

LME Reference — programming constructs 95

See also
function

switch

Conditional execution of statements depending on a number or a
string.

Syntax
switch expr

case e1
s1
...

case [e2,e3,...]
s23
...

case {e4,e5,...}
s45
...

otherwise
so
...

end

switch string
case str1

s1
...

case str2
s2
...

case {str3,str4,...}
s34
...

otherwise
so
...

end

Description
The expression of the switch statement is evaluated. If it yields a
number, it is compared successively to the result of the expressions of
the case statements, until it matches one; then the statements which
follow the case are executed until the next case, otherwise or end.
If the case expression yields a vector or a list, a match occurs if the
switch expression is equal to any of the elements of the case expres-
sion. If no match is found, but otherwise is present, the statements

96 Sysquake Remote ©1999-2016, Calerga Sàrl

following otherwise are executed. If the switch expression yields a
string, a match occurs only in case of equality with a case string ex-
pression or any element of a case list expression.

Example
switch option
case ’arithmetic’
m = mean(data);

case ’geometric’
m = prod(data)̂ (1/length(data));

otherwise
error(’unknown option’);

end

See also
case, otherwise, if

try

Error recovery.

Syntax
try
...

end

try
...

catch
...

end

try
...

catch e
...

end

Description
The statements after try are executed. If an error occurs, execution
is switched to the statements following catch, if any, or to the state-
ments following end. If catch is followed by a variable name, a struc-
ture describing the error (the result of lasterror) is assigned to this
variable; otherwise, the error message can be retrieved with lasterr
or lasterror. If no error occurs, the statements between try and end
are ignored.

try ignores two errors:

LME Reference — programming constructs 97

– the interrupt key (Control-Break on Windows, Command-. on ma-
cOS, Control-C on other operating systems with a keyboard, time-
out in Sysquake Remote);

– an attempt to execute an untrusted function in a sandbox. The
error can be handled only outside the sandbox.

Examples
a = 1;
a(2), 555
Index out of range ’a’

try, a(2), end, 555
555

try, a(2), catch, 333, end, 555
333
555

try, a, catch, 333, end, 555
a =
1

555

See also
lasterr, lasterror, error

until

End of repeat/until loop.

See also
repeat

use

Import libraries.

Syntax
use lib
use lib1, lib2, ...

Description
Functions can be defined in separate files, called libraries. use makes
them available in the current context, so that they can be called by
the functions or statements which follow. Using a library does not
make available functions defined in its sublibraries; however, libraries

98 Sysquake Remote ©1999-2016, Calerga Sàrl

can be used multiple times, in each context where their functions are
referenced.

All use statements are parsed before execution begins. They can be
placed anywhere in the code, typically before the first function. They
cannot be skipped by placing them after an if statement. Likewise,
try/catch cannot be used to catch errors; useifexists should be
used if the absence of the library is to be ignored.

See also
useifexists, include, function, private, public, info

useifexists

Import libraries if they exist.

Syntax
useifexists lib
useifexists lib1, lib2, ...

Description
useifexists has the same syntax and effect as use, except that li-
braries which are not found are ignored without error.

See also
use, include, function, private, public, info

while

Loop controlled by a boolean expression.

Syntax
while expr

s1
...

end

Description
The statements between the while statement and the corresponding
end are executed repeatedly as long as the expression of the while
statement yields true (nonempty and all elements different from 0
and false).

LME Reference — miscellaneous functions 99

If a break statement is executed in the scope of the while loop (i.e.
not in an enclosed loop), the loop is terminated.

If a continue statement is executed in the scope of the while loop,
statements following continue are ignored and a new loop is per-
formed if the while statement yields true.

Example
e = 1;
i = 2;
while true % forever
eNew = (1 + 1/i) ˆ i;
if abs(e - eNew) < 0.001
break;

end
e = eNew;
i = 2 * i;

end
e
2.717

See also
repeat, for, break, continue, if

5.13 Miscellaneous Functions

This section describes functions related to programming: function ar-
guments, error processing, evaluation, memory.

assert

Check that an assertion is true.

Syntax
assert(expr)
assert(expr, str)
assert(expr, format, arg1, arg2, ...)
assert(expr, identifier, format, arg1, arg2, ...)

Description
assert(expr) checks that expr is true and throws an error otherwise.
Expression expr is considered to be true if it is a non-empty array
whose elements are all non-zero.

100 Sysquake Remote ©1999-2016, Calerga Sàrl

With more input arguments, assert checks that expr is true and
throws the error specified by remaining arguments otherwise. These
arguments are the same as those expected by function error.

When the intermediate code is optimized, assert can be ignored.
It should be used only to produce errors at an early stage or as a de-
bugging aid, not to trigger the try/catch mechanism. The expression
should not have side effects. The most common use of assert is to
check the validity of input arguments.

Example
function y = fact(n)
assert(length(n)==1 && isreal(n) && n==round(n), ’LME:nonIntArg’);
y = prod(1:n);

See also
error, warning, try

builtin

Built-in function evaluation.

Syntax
(argout1, ...) = builtin(fun, argin1, ...)

Description
(y1,y2,...)=builtin(fun,x1,x2,...) evaluates the built-in func-
tion fun with input arguments x1, x2, etc. Output arguments are as-
signed to y1, y2, etc. Function fun is specified by its name as a string.

builtin is useful to execute a built-in function which has been re-
defined.

Example
Here is the definition of operator plus so that it can be used with
character strings to concatenate them.

function r = plus(a, b)
if ischar(a) && ischar(b)
r = [a, b];

else
r = builtin(’plus’, a, b);

end

The original meaning of plus for numbers is preserved:

1 + 2
3

’ab’ + ’cdef’
abcdef

LME Reference — miscellaneous functions 101

See also
feval

clear

Discard the contents of a variable.

Syntax
clear
clear(v1, v2, ...)
clear -functions

Description
Without argument, clear discards the contents of all the local
variables, including input arguments. With string input arguments,
clear(v1,v2,...) discards the contents of the enumerated
variables. Note that the variables are specified by strings; clear is a
normal function which evaluates its arguments if they are enclosed
between parenthesis. You can also omit parenthesis and quotes and
use command syntax.

clear is usually not necessary, because local variables are auto-
matically discarded when the function returns. It may be useful if a
large variable is used only at the beginning of a function, or at the
command-line interface.

clear -functions or clear -f removes the definition of all func-
tions. It can be used only from the command-line interface, not in a
function.

Examples
In the example below, clear(b) evaluates its argument and clears
the variable whose name is ’a’; clear b, without parenthesis and
quotes, does not evaluate it; the argument is the literal string ’b’.

a = 2;
b = ’a’;
clear(b)
a
Undefined variable ’a’

b
a

clear b
b
Undefined variable b

102 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
variable assignment, isdefined

deal

Copy input arguments to output arguments.

Syntax
(v1, v2, ...) = deal(e)
(v1, v2, ...) = deal(e1, e2, ...)

Description
With a single input argument, deal provides a copy of it to all its output
arguments. With multiple input arguments, deal provides them as
output arguments in the same order.

deal can be used to assign a value to multiple variables, to swap
the contents of two variables, or to assign the elements of a list to
different variables.

Examples
Swap variable a and b:

a = 2;
b = ’abc’;
(a, b) = deal(b, a)
a =
abc

b =
2

Copy the same random matrix to variables x, y, and z:

(x, y, z) = deal(rand(5));

Assign the elements of list l to variables v1, v2, and v3:

l = {1, ’abc’, 3:5};
(v1, v2, v3) = deal(l{:})
v1 =
1

v2 =
abc

v3 =
3 4 5

See also
varargin, varargout, operator {}

LME Reference — miscellaneous functions 103

dumpvar

Dump the value of an expression as an assignment to a variable.

Syntax
dumpvar(value)
dumpvar(name, value)
dumpvar(fd, name, value)
str = dumpvar(value)
str = dumpvar(name, value)
... = dumpvar(..., fd=fd, NPrec=nPrec)

Description
dumpvar(fd,name,value) writes to the channel fd (the standard out-
put by default) a string which would set the variable name to value, if
it was evaluated by LME. If name is omitted, only the textual represen-
tation of value is written. A file descriptor can also be specified as a
named argument fd.

With an output argument, dumpvar stores result into a string and
produces no output.

In addition to fd, dumpvar also accepts named argument NPrec for
the maximum number of digits in floating-point numbers.

Examples
dumpvar(2+3)
5

a = 6; dumpvar(’a’, a)
a = 6;

s = ’abc’; dumpvar(’string’, s)
string = ’abc’;

dumpvar(’x’, 1/3, NPrec=5)
x = 0.33333;

See also
fprintf, sprintf, str2obj

error

Display an error message and abort the current computation.

Syntax
error(str)
error(format, arg1, arg2, ...)
error(identifier, format, arg1, arg2, ...)
error(identifier)
error(..., throwAsCaller=b)

104 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
Outside a try block, error(str) displays string str as an error mes-
sage and the computation is aborted. With more arguments, error
use the first argument as a format string and displays remaining argu-
ments accordingly, like fprintf.

In a try block, error(str) throws a user error without displaying
anything.

An error identifier can be added in front of other arguments. It is a
string made of at least two segments separated by semicolons. Each
segment has the same syntax as variable or function name (i.e. it
begins with a letter or an underscore, and it continues with letters,
digits and underscores.) The identifier can be retrieved with lasterr
or lasterror in the catch part of a try/catch construct and helps to
identify the error. For errors thrown by LME built-in functions, the first
segment is always LME.

The identifier of an internal error (an error which can be thrown
by an LME builti-in function, such as ’LME:indexOutOfRange’), can
be used as the only argument; then the standard error message is
displayed.

error also accepts a boolean named argument throwAsCaller. If
it is true, the context of the error is changed so that the function
calling error appears to throw the error itself. It is useful for fully
debugged functions whose internal operation can be hidden. Keyword
hideimplementation has a similar effect at the level of a library, by
hiding the internal error handling in all its functions.

Examples
error(’Invalid argument.’);
Invalid argument.

o = ’ground’;
error(’robot:hit’, ’The robot is going to hit %s’, o);
The robot is going to hit ground

lasterror
message: ’The robot is going to hit ground’
identifier: ’robot:hit’

Definition of a function which checks its input arguments, and a test
function which calls it:

function xmax = largestRoot(a, b, c)
// largest root of a x̂ 2 + b x + c = 0
if b̂ 2 - 4 * a * c < 0
error(’No real root’, throwAsCaller=true);

end
xmax = (-b + sqrt(b̂ 2 - 4 * a * c)) / (2 * a);

function test
a = largestRoot(1,1,1);

LME Reference — miscellaneous functions 105

Error message:

test
No real root (test;8)

Error message without throwAsCaller=true in the definition of
largestRoot:

test
No real root (largestRoot;4)
-> test;8

See also
warning, try, lasterr, lasterror, assert, fprintf,
hideimplementation

eval

Evaluate the contents of a string as an expression or statements.

Syntax
x = eval(str_expression)
eval(str_statement)

Description
If eval has output argument(s), the input argument is evaluated as an
expression whose result(s) is returned. Without output arguments, the
input argument is evaluated as statement(s). eval can evaluate and
assign to existing variables, but cannot create new ones.

Examples
eval(’1+2’)
3

a = eval(’1+2’)
a = 3

eval(’a=2+3’)
a = 5

See also
feval

exist

Existence of a function or variable.

106 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
b = exist(name)
b = exist(name, type)

Description
exist returns true if its argument is the name of an existing function
or variable, or false otherwise. A second argument can restrict the
lookup to builtin functions (’builtin’), user functions (’function’),
or variables (’variable’).

Examples
exist(’sin’)
true

exist(’cos’, ’function’)
false

See also
info, isdefined

feval

Function evaluation.

Syntax
(argout1,...) = feval(fun,argin1,...)

Description
(y1,y2,...)=feval(fun,x1,x2,...) evaluates function fun with in-
put arguments x1, x2, etc. Output arguments are assigned to y1, y2,
etc. Function fun is specified by either its name as a string, a function
reference, or an anonymous or inline function.

If a variable f contains a function reference or an anonymous or
inline function, f(arguments) is equivalent to feval(f,arguments).

Examples
y = feval(’sin’, 3:5)
y =
0.1411 -0.7568 -0.9589

y = feval(@(x) sin(2*x), 3:5)
y =
-0.2794 0.9894 -0.544

fun = @(x) sin(2*x);
y = fun(3:5)
y =
-0.2794 0.9894 -0.544

LME Reference — miscellaneous functions 107

See also
builtin, eval, fevalx, apply, inline, operator @

fun2str

Name of a function given by reference or source code of an inline
function.

Syntax
str = fun2str(funref)
str = fun2str(inlinefun)

Description
fun2str(funref) gives the name of the function whose reference is
funref.

fun2str(inlinefun) gives the source code of the inline function
inlinefun.

Examples
fun2str(@sin)
sin

fun2str(inline(’x+2*y’, ’x’, ’y’))
function y=f(x,y);y=x+2*y;

See also
operator @, str2fun

info

Information about LME.

Syntax
info
info builtin
info errors
info functions
info global
info libraries
info methods
info operators
info persistent
info size
info threads

108 Sysquake Remote ©1999-2016, Calerga Sàrl

info usedlibraries
info variables
info(kind, fd=fd)
str = info
SA = info(kind)

Description

info displays the language version. With an output argument, the
language version is given as a string.

info builtin displays the list of built-in functions with their mod-
ule name (modules are subsets of built-in functions). A letter u is
displayed after each untrusted function (functions which cannot be ex-
ecuted in the sandbox). With an output argument, info(’builtin’)
gives a structure array which describes each built-in function, with the
following fields:

name function name
module module name
trusted true if the function is trusted

info operators displays the list of operators. With an output
argument, info(’operators’) gives a list of structures, like
info(’builtin’).

info functions displays the list of user-defined functions with the
library where they are defined and the line number in the source code.
Parenthesis denote functions known by LME, but not loaded; they also
indicate spelling errors in function or variable names. With an out-
put argument, info(’functions’) gives a structure array which de-
scribes each user-defined function, with the following fields:

library library name
name function name
loaded true if loaded
line line number if available, or []

info methods displays the list of methods. With an output argu-
ment, info(’methods’) gives a structure array which describes each
method, with the following fields:

library library name
class class name
name function name
loaded true if loaded
line line number if available, or []

info variables displays the list of variables with their type and
size. With an output argument, info(’variables’) gives a structure
array which describes each variable, with the following fields:

LME Reference — miscellaneous functions 109

name function name
defined true if defined

info global displays the list of all global variables. With an output
argument, info(’global’) gives the list of the global variable names.

info persistent displays the list of all persistent variables. With
an output argument, info(’persistent’) gives the list of the persis-
tent variable names.

info libraries displays the list of all loaded libraries with the li-
braries they have loaded with use. The base context in which direct
commands are evaluated is displayed as (base); it is not an actual
library and contains no function definition. With an output argument,
info(’libraries’) gives a structure array with the following fields:

library library name, or ’(base)’
sublibraries list of sublibraries

info usedlibraries displays the list of libraries available in the
current context. With an output argument, info(’usedlibraries’)
gives the list of the names of these libraries.

info errors displays the list of error messages. With an output
argument, info(’errors’) gives a structure array which describes
each error message, with the following fields:

id error ID
msg error message

info size displays the size in bytes of integer numbers (as used
for indices and most internal computations), double numbers, single
numbers, and pointers; the byte ordering in multibyte values (little-
endian if the least-significant byte comes first, else big-endian), and
whether arrays are stores column-wise or row-wise. With an output
argument, info(’size’) gives them in a structure of six fields:

int integer size
double double size
single single size (or 0)
ptr pointer size
be true if big-endian
columnwise true for column-wise array layout

info threads displays the ID of all threads. With an output argu-
ment, info(’threads’) gives a structure array which describes each
thread, with the following fields:

id thread ID
totaltime execution time in seconds

Only the first character of the argument is meaningful; info b is
equivalent to info builtin.

A named argument fd can specify the output channel; in that case,

110 Sysquake Remote ©1999-2016, Calerga Sàrl

the command syntax cannot be used.

Examples
info
LME 5.2

info s
int: 4 bytes
double: 8 bytes
ptr: 4 bytes
little endian
array layout: row-wise

info b
LME/abs
LME/acos
LME/acosh
(etc.)

info v
ans (1x1 complex)

vars = info(’v’)
var =
2x1 struct array (2 fields)

List of variables displayed on channel 2 (standard error channel):

info(’v’, fd=2)

Library hierarchy in the command-line interface:

use lti
info l
(base): _cli, lti
_cli: lti
lti: polynom
polynom

The meaning is as follows: (base) is the context where commands are
evaluated; functions defined from the command-line interface, stored
in _cli, and in lti can be called from there. Functions defined from
the command-line interface also have access to the definitions of lti.
Library lti uses library polynom, but functions defined in polynom
cannot be called directly from commands (polynom does not appear
as a sublibrary of (base) or _cli). Finally, library polynom does not
import a sublibrary itself.

See also
inmem, which, exist, use

LME Reference — miscellaneous functions 111

isequal

Comparison.

Syntax
b = isequal(a, b, ...)

Description
isequal compares its input arguments and returns true if all of them
are equal, and false otherwise. Two numeric, logical and/or char arrays
are considered to be equal if they have the same size and if their
corresponding elements have the same value; an array which has at
least one NaN (not a number) element is not equal to any other array.
Two lists, cell arrays, structures or structure arrays are equal if the
corresponding elements or fields are equal. Structure fields do not
have to be in the same order.

isequal differs from operator == in that it results in a scalar logical
value and arrays do not have to have the same size. It differs from
operator === in that it does not require the type or the structure field
order to agree, and in the way NaN is interpreted.

See also
operator ==, operator ===

inline

Creation of inline function.

Syntax
fun = inline(funstr)
fun = inline(expr)
fun = inline(expr, arg1, ...)
fun = inline(funstr, param)
fun = inline(expr, arg1, ..., paramstruct)
fun = inline(expr, ..., true)

Description
Inline function are LME objects which can be evaluated to give a result
as a function of their input arguments. Contrary to functions declared
with the function keyword, inline functions can be assigned to vari-
ables, passed as arguments, and built dynamically. Evaluating them
with feval is faster than using eval with a string, because they are
compiled only once to an intermediate code. They can also be used
as the argument of functions such as fzero and fmin.

112 Sysquake Remote ©1999-2016, Calerga Sàrl

inline(funstr) returns an inline function whose source code is
funstr. Input argument funstr follows the same syntax as a plain
function. The function name is ignored.

inline(expr) returns an inline function with one implicit input ar-
gument and one result. The input argument expr is a string which
evaluates to the result. The implicit input argument of the inline func-
tion is a symbol made of a single lower-case letter different from i and
j, such as x or t, which is found in expr. If several such symbols are
found, the one closer to x in alphabetical order is picked.

inline(expr,arg1,...) returns an inline function with one re-
sult and the specified arguments arg1 etc. These arguments are also
given as strings.

Inline functions also accept an additional input argument which cor-
respond to fixed parameters provided when the function is executed.
inline(funstr,param), where funstr is a string which contains the
source code of a function, stores param together with the function.
When the function is called, param is prepended to the list of input
arguments.

inline(expr,args...,paramstruct) is a simplified way to create
an inline function when the code consists of a single expression. args
is the names of the arguments which must be supplied when the inline
function is called, as strings; paramstruct is a structure whose fields
define fixed parameters.

inline(expr,...,true) defines a function which can return as
many output arguments as what feval (or other functions which call
the inline function) expects. Argument expr must be a function call
itself.

Anonymous functions created with operator @ are an alternative,
often easier way of creating inline functions. The result is the same.
Since inline is a normal function, it must be used in contexts where
fixed parameters cannot be created as separate variables.

Examples
A simple expression, evaluated at x=1 and x=2:

fun = inline(’cos(x)*exp(-x)’);
y = feval(fun, 2)
y =
-5.6319e-2

y = feval(fun, 5)
y =
1.9113e-3

A function of x and y:

fun = inline(’exp(-x̂ 2-ŷ 2)’, ’x’, ’y’);

LME Reference — miscellaneous functions 113

A function with two output arguments (the string is broken in three
lines to have a nice program layout):

fun = inline([’function (a,b)=f(v);’,...
’a=mean(v);’,...
’b=prod(v)̂ (1/length(v));’]);

(am, gm) = feval(fun, 1:10)
am =
5.5

gm =
4.5287

Simple expression with fixed parameter a:

fun = inline(’cos(a*x)’, ’x’, struct(’a’,2));
feval(fun, 3)
0.9602

An equivalent function where the source code of a complete function
is provided:

fun = inline(’function y=f(a,x); y=cos(a*x);’, 2);
feval(fun, 3)
0.9602

The same function created with the anonymous function syntax:

a = 2;
fun = @(x) cos(a*x);

A function with two fixed parameters a and b whose values are pro-
vided in a list:

inline(’function y=f(p,x);(a,b)=deal(p{:});y=a*x+b;’,{2,3})

An inline function with a variable number of output arguments:

fun = inline(’eig(exp(x))’,true);
e = feval(fun, magic(2))
e =
-28.1440
38.2514

(V,D) = feval(fun, magic(2))
V =
-0.5455 -0.4921
0.8381 -0.8705

D =
-28.1440 0.0000
0.0000 38.2514

See also
function, operator @, feval, eval

114 Sysquake Remote ©1999-2016, Calerga Sàrl

inmem

List of functions loaded in memory.

Syntax
inmem
SA = inmem

Description
inmem displays the list of user-defined functions loaded in memory with
the library where they are defined. With an output argument, inmem
gives the result as a structure array which describes each user-defined
function loaded in memory, with the following fields:

library library name
class class name (’’ for functions)
name function name

See also
info, which

isdefined

Check if a variable is defined.

Syntax
isdefined(var)

Description
isdefined(var) returns true if variable var is defined, and false oth-
erwise. Unlike ordinary functions, isdefined’s argument must be a
variable known to LME, referenced by name without quotes, and not
an arbitrary expression. A variable is undefined in the following cir-
cumstances:

– function input argument when the function call does not supply
enough values;

– function output argument which has not been assigned to, in the
function itself, not in a function call;

– function local variable before its first assignment;

– function local variable after it has been cleared with function
clear.

At command-line interface, clear usually discards completely vari-
ables.

LME Reference — miscellaneous functions 115

Example
Let function f be defined as

function f(x)
if isdefined(x)
disp(x);

else
disp(’Argument x is not defined.’);

end

Then

f
Argument x is not defined.

f(3)
3

See also
nargin, exist, which, clear, function

isfun

Test for an inline function or function reference.

Syntax
b = isfun(obj)

Description
isfun(obj) returns true if obj is an inline function or a function refer-
ence, or false otherwise.

See also
isa, class, fun2str

isglobal

Test for the existence of a global variable.

Syntax
b = isglobal(str)

Description
isglobal(str) returns true if the string str is the name of a global
variable, defined as such in the current context.

116 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
info, exist, isdefined, which

iskeyword

Test for a keyword name.

Syntax
b = iskeyword(str)
list = iskeyword

Description
iskeyword(str) returns true if the string str is a reserved keyword
which cannot be used as a function or variable name, or false other-
wise. Keywords include if and global, but not the name of built-in
functions like sin or i.

Without input argument, iskeyword gives the list of all keywords.

Examples
iskeyword(’otherwise’)
true

iskeyword
{’break’,’case’,’catch’,’continue’,’else’,’elseif’,
’end’,’endfunction’,’for’,’function’,’global’,
’hideimplementation’,’if’,’otherwise’,’persistent’,
’private’,’public’,’repeat’,’return’,’switch’,’try’,
’until’,’use’,’useifexists’,’while’}

See also
info, which

ismac

Check whether computer runs under macOS.

Syntax
b = ismac

Description
ismac returns true on macOS, false on other platforms.

See also
isunix, ispc

LME Reference — miscellaneous functions 117

ispc

Check whether platform is a PC.

Syntax
b = ispc

Description
ispc returns true on Windows, false on other platforms.

See also
isunix, ismac

isunix

Check whether computer runs under unix.

Syntax
b = isunix

Description
isunix returns true on unix platforms (including Mac OS X and unix-
like), false on other platforms.

See also
ispc, ismac

lasterr

Last error message.

Syntax
msg = lasterr
(msg, identifier) = lasterr

Description
lasterr returns a string which describes the last error. With two out-
put arguments, it also gives the error identifier. It can be used in the
catch part of the try construct.

118 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
x = 2;
x(3)
Index out of range

(msg, identifier) = lasterr
msg =
Index out of range

identifier =
LME:indexOutOfRange

See also
lasterror, try, error

lasterror

Last error structure.

Syntax
s = lasterror

Description
lasterror returns a structure which describes the last error. It con-
tains the following fields:

identifier string short tag which identifies the error
message string error message

The structure can be used as argument to rethrow in the catch
part of a try/catch construct to propagate the error further.

Example
x = 2;
x(3)
Index out of range

lasterror
message: ’Index out of range’
identifier: ’LME:indexOutOfRange’

See also
lasterr, try, rethrow, error

namedargin

Named input arguments.

LME Reference — miscellaneous functions 119

Syntax
function ... = fun(..., namedargin)

Description
namedargin is a special variable which can be used to collect named
input arguments. In the function declaration, it must be used as the
last (or unique) input argument. When the function is called with
named arguments, all of them are collected and stored in namedargin
as a structure, where field names correspond to the argument names.
With namedargin, there is no matching between the named argu-
ments and the argument names in the function declaration. If the
function is called without any named argument, namedargin is set to
an empty structure.

In the body of the function, namedargin is a normal variable. Its
fields can be accessed with the dot notation namedargin.name or
namedargin.(name). All functions using structures can be used, such
as fieldnames or isfield. namedargin can also be modified or
assigned to any value of any type.

When both varargin (for a variable number of unnamed argu-
ments) and namedargin are used in the same function, they must be
the last-but-one and the last arguments in the function declaration,
respectively.

Example
Here is a function which calculates the volume of a solid of revolution
defined by a function y=f(x) between x=a and x=b, rotating around
y=0. It accepts the same options as integral, given as a single option
argument, as named values or both.

function V = solidRevVolume(fun, a, b, opt=struct, namedargin)
opt = structmerge(opt, namedargin);
V = pi * integral(@(x) fun(x)̂ 2, a, b, opt);

It can be called without any option (opt is set to its default value, an
empty structure):

cyl = solidRevVolume(@(x) 1, 0, 1)
cyl = 3.1416

cone = solidRevVolume(@(x) x, 0, 2, RelTol=1e-4)
cone = 8.3776

See also
varargin, function, struct, fieldnames, structmerge, operator .

nargin

Number of input arguments.

120 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
n = nargin
n = nargin(fun)

Description
Calling a function with less arguments than what the function expects
is permitted. In this case, the trailing variables are not defined. The
function can use the nargin function to know how many arguments
were passed by the caller to avoid accessing the undefined variables.
Named arguments (arguments passed as name=value by the caller)
are not included in the count.

Note that if you want to have an optional argument before the end
of the list, you have to interpret the meaning of the variables yourself.
LME always sets the nargin first arguments.

There are two other ways to let a function accept a variable num-
ber of input arguments: to define default values directly in the func-
tion header, or to call varargin to collect some or all of the input
arguments in a list.

With one argument, nargin(fun) returns the (maximum) number
of input arguments a function accepts. fun can be the name of a built-
in or user function, a function reference, or an inline function. Func-
tions with a variable number of input arguments (such as fprintf)
give -1.

Examples
A function with a default value (pi) for its second argument:

function x = multiplyByScalar(a,k)
if nargin < 2 % multiplyByScalar(x)
k = pi; % same as multiplyByScalar(x,pi)

end
x = k * a;

A function with a default value (standard output) for its first argument.
Note how you have to interpret the arguments.

function fprintstars(fd,n)
if nargin == 1 % fprintstars(n) to standard output
fprintf(repmat(’*’,1,fd)); % n is actually stored in fd

else
fprintf(fd, repmat(’*’,1,n));

end

Number of input arguments of function plus (usually called as the infix
operator "+"):

nargin(’plus’)
2

LME Reference — miscellaneous functions 121

See also
nargout, varargin, isdefined, function

nargout

Number of output arguments.

Syntax
n = nargout
n = nargout(fun)

Description
A function can be called with between 0 and the number of output
arguments listed in the function definition. The function can use
nargout to check whether some output arguments are not used, so
that it can avoid computing them or do something else.

With one argument, nargout(fun) returns the (maximum) number
of output arguments a function can provide. fun can be the name of
a built-in or user function, a function reference, or an inline function.
Functions with a variable number of output arguments (such as feval)
give -1.

Example
A function which prints nicely its result when it is not assigned or used
in an expression:

function y = multiplyByTwo(x)
if nargout > 0
y = 2 * x;

else
fprintf(’The double of %f is %f\n’, x, 2*x);

end

Maximum number of output arguments of svd:

nargout(’svd’)
3

See also
nargin, varargout, function

rethrow

Throw an error described by a structure.

122 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
rethrow(s)
rethrow(s, throwAsCaller=b)

Description
rethrow(s) throws an error described by structure s, which contains
the same fields as the output of lasterror. rethrow is typically used
in the catch part of a try/catch construct to propagate further an
error; but it can also be used to initiate an error, like error.

rethrow also accepts a boolean named argument throwAsCaller.
If it is true, the context of the error is changed so that the function
calling rethrow appears to throw the error itself. It is useful for fully
debugged functions whose internal operation can be hidden.

Example
The error whose identifier is ’LME:indexOutOfRange’ is handled by
catch; other errors are not.

try
...

catch
err = lasterror;
if err.identifier === ’LME:indexOutOfRange’
...

else
rethrow(err);

end
end

See also
lasterror, try, error

str2fun

Function reference.

Syntax
funref = str2fun(str)

Description
str2fun(funref) gives a function reference to the function whose
name is given in string str. It has the same effect as operator @,
which is preferred when the function name is fixed.

LME Reference — miscellaneous functions 123

Examples
str2fun(’sin’)
@sin

@sin
@sin

a = ’cos’;
str2fun(a)
@cos

See also
operator @, fun2str

str2obj

Convert to an object its string representation.

Syntax
obj = str2obj(str)

Description
str2obj(str) evaluates string str and gives its result. It has the in-
verse effect as dumpvar with one argument. It differs from eval by
restricting the syntax it accepts to literal values and to the basic con-
structs for creating complex numbers, arrays, lists, structures, objects,
and other built-in types.

Examples
str2obj(’1+2j’)
1 + 2j

str = dumpvar({1, ’abc’, 1:100})
str =
{1, ...
’abc’, ...
[1:100]}

str2obj(str)
{1,’abc’,real 1x100}

eval(str)
{1,’abc’,real 1x100}

str2obj(’sin(2)’)
Bad argument ’str2obj’

eval(’sin(2)’)
0.9093

See also
eval, dumpvar

124 Sysquake Remote ©1999-2016, Calerga Sàrl

varargin

Remaining input arguments.

Syntax
function ... = fun(..., varargin)
function ... = fun(..., varargin, namedargin)
l = varargin

Description
varargin is a special variable which can be used to collect input argu-
ments. In the function declaration, it must be used after the normal in-
put arguments; if namedargin is also present, varargin immediately
precedes it. When the function is called with more arguments than
what can be assigned to the other arguments, remaining ones are col-
lected in a list and assigned to varargin. In the body of the function,
varargin is a normal variable. Its elements can be accessed with the
brace notation varargin{i}. nargin is always the total number of
arguments passed to the function by the caller.

When the function is called with fewer arguments than what is de-
clared, varargin is set to the empty list, {}.

Example
Here is a function which accepts any number of square matrices and
builds a block-diagonal matrix:

function M = blockdiag(varargin)
M = [];
for block = varargin
// block takes the value of each input argument
(m, n) = size(block);
M(end+1:end+m,end+1:end+n) = block;

end

In the call below, varargin contains the list {ones(3),2*ones(2),3}.

blockdiag(ones(3),2*ones(2),3)
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 2 2 0
0 0 0 2 2 0
0 0 0 0 0 3

See also
nargin, namedargin, varargout, function

LME Reference — miscellaneous functions 125

varargout

Remaining output arguments.

Syntax
function (..., varargout) = fun(...)
varargout = ...

Description
varargout is a special variable which can be used to dispatch output
arguments. In the function declaration, it must be used as the last
(or unique) output argument. When the function is called with more
output arguments than what can be obtained from the other argu-
ments, remaining ones are extracted from the list varargout. In the
body of the function, varargout is a normal variable. Its value can
be set globally with the brace notation {...} or element by element
with varargout{i}. nargout can be used to know how many output
arguments to produce.

Example
Here is a function which differentiates a vector of values as many
times as there are output arguments:

function varargout = multidiff(v)
for i = 1:nargout
v = diff(v);
varargout{i} = v;

end

In the call below, [1,3,7,2,5,3,1,8] is differentiated four times.

(v1, v2, v3, v4) = multidiff([1,3,7,2,5,3,1,8])
v1 =

2 4 -5 3 -2 -2 7
v2 =

2 -9 8 -5 0 9
v3 =

-11 17 -13 5 9
v4 =

28 -30 18 4

See also
nargout, varargin, function

variables

Contents of the variables as a structure.

126 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
v = variables

Description
variables returns a structure whose fields contain the variables de-
fined in the current context.

Example
a = 3;
b = 1:5;
variables
a: 3
b: real 1x5
...

See also
info

warning

Write a warning to the standard error channel.

Syntax
warning(msg)
warning(format, arg1, arg2, ...)

Description
warning(msg) displays the string msg. It should be used to notify the
user about potential problems, not as a general-purpose display func-
tion.

With more arguments, warning uses the first argument as a format
string and displays remaining arguments accordingly, like fprintf.

Example
warning(’Doesn\’t converge.’);

See also
error, disp, fprintf

which

Library where a function is defined.

LME Reference — sandbox function 127

Syntax
fullname = which(name)

Description
which(name) returns an indication of where function name is defined.
If name is a user function or a method prefixed with its class and two
colons, the result is name prefixed with the library name and a slash.
If name is a built-in function, it is prefixed with (builtin); a variable,
with (var); and a keyword, with (keyword). If name is unknown, which
returns the empty string.

Examples
which logspace
stdlib/logspace

which polynom::plus
polynom/polynom::plus

which sin
(builtin)/sin

x = 2;
which x
(var)/x

See also
info, isdefined

5.14 Sandbox Function

sandbox

Execute untrusted code in a secure environment.

Syntax
sandbox(str)
sandbox(str, varin)
varout = sandbox(str)
varout = sandbox(str, varin)

Description
sandbox(str) executes the statements in string str. Functions which
might do harm if used improperly are disabled; they include those
related to the file system, to devices and to the network. Global and
persistent variables are forbidden as well; but local variables can be
created. The same restrictions apply to functions called directly or

128 Sysquake Remote ©1999-2016, Calerga Sàrl

indirectly by statements in str. The purpose of sandbox is to permit
the evaluation of code which comes from untrusted sources, such as
the Internet.

sandbox(str,varin) evaluates the statements in string str in a
context with local variables equal to the fields of structure varin.

With an output argument, sandbox collects the contents of all vari-
ables in the fields of a single structure.

An error is thrown when the argument of sandbox attempts to exe-
cute one of the functions which are disabled. This error can be caught
by a try/catch construct outside sandbox, but not inside its argument,
so that unsuccessful attempts to circumvent the sandbox are always
reported to the appropriate level.

Examples
Evaluation of two assignments; the second value is displayed, and the
variables are discarded at the end of the evaluation.

sandbox(’a=2; b=3:5’);
b =
3 4 5

Evaluation of two assignments; the contents of the variables are
stored in structure result.

result = sandbox(’a=2; b=3:5;’)
result =
a: 2
b: real 1x3

Evaluation with local variables x and y initialized with the field of a
structure. Variable z is local to the sandbox.

in.x = 12;
in.y = 1:10;
sandbox(’z = x + y’, in);
z =
13 14 15 16 17 18 19 20 21 22

Attempt to execute the untrusted function fopen and to hide it from
the outside. Both attempts fail: fopen is trapped and the security
violation error is propagated outside the sandbox.

sandbox(’try; fd=fopen(’/etc/passwd’); end’);
Security violation ’fopen’

See also
sandboxtrust, eval, variables

LME Reference — operators 129

sandboxtrust

Escape the sandbox restrictions.

Syntax
sandboxtrust(fun)

Description
sandboxtrust(fun) sets a flag associated with function fun so that
fun is executed without restriction, even when called from a sandbox.
All functions called directly or indirectly from a trusted function are
executed without restriction, except if a nested call to sandbox is per-
formed. Argument fun can be a function reference or the name of a
function as a string; the function must be a user function, not a built-in
one.

The purpose of sandboxtrust is to give back some of the capabili-
ties of unrestricted code to code executed in a sandbox. For instance,
if unsecure code must be able to read the contents of a specific file, a
trusted function should be written for that. It is very important for the
trusted function to check carefully its arguments, such as file paths or
URL.

Example
Function which reads the contents of file ’data.txt’:

function data = readFile
fd = fopen(’data.txt’);
data = fread(fd, inf, ’*char’);
fclose(fd);

Execution of unsecure code which may read this file:

sandboxtrust(@readFile);
sandbox(’d = readFile;’);

See also
sandbox

5.15 Operators

Operators are special functions with a syntax which mimics mathe-
matical arithmetic operations like the addition and the multiplication.
They can be infix (such as x+y), separating their two arguments (called
operands); prefix (such as -x), placed before their unique operand; or

130 Sysquake Remote ©1999-2016, Calerga Sàrl

postfix (such as M’), placed after their unique operand. In Sysquake,
their arguments are always evaluated from left to right. Since they
do not require parenthesis or comma, their priority matters. Priority
specifies when subexpressions are considered as a whole, as the argu-
ment of some operator. For instance, in the expression a+b*c, where
* denotes the multiplication, the evaluation could result in (a+b)*c or
a+(b*c); however, since operator *’s priority is higher than operator
+’s, the expression yields a+(b*c) without ambiguity.

Here is the list of operators, from higher to lower priority:

’ .’
ˆ .̂
- (unary)
* .* / ./ \ .\
+ -
== =̃ < > <= >= === =̃=
˜
&
|
&&
||
: ?
,
;

Most operators have also a functional syntax; for instance, a+b can
also be written plus(a,b). This enables their overriding with new
definitions and their use in function references or functions such as
feval which take the name of a function as an argument.

Here is the correspondence between operators and functions:

[a;b] vertcat(a,b)
[a,b] horzcat(a,b)
a:b colon(a,b)
a:b:c colon(a,b,c)
a|b or(a,b)
a&b and(a,b)
a<=b le(a,b)
a<b lt(a,b)
a>=b ge(a,b)
a>b gt(a,b)
a==b eq(a,b)
ã =b ne(a,b)
a===b same(a,b)
ã ==b unsame(a,b)
a+b plus(a,b)

a-b minus(a,b)
a*b mtimes(a,b)
a/b mrdivide(a,b)
a\b mldivide(a,b)
a.*b times(a,b)
a./b rdivide(a,b)
a.\b ldivide(a,b)
â b mpower(a,b)
a.̂ b power(a,b)
ã not(a)
-a uminus(a)
+a uplus(a)
a’ ctranspose(a)
a.’ transpose(a)

LME Reference — operators 131

Operator which do not have a corresponding function are ?:, &&
and || because unlike functions, they do not always evaluate all of
their operands.

Operator ()

Parenthesis.

Syntax
(expr)
v(:)
v(index)
v(index1, index2)
v(:, index)
v(index, :)
v(select)
v(select1, select2)
v(:,:)

Description
A pair of parenthesis can be used to change the order of evaluation.
The subexpression it encloses is evaluated as a whole and used as if
it was a single object. Parenthesis serve also to indicate a list of input
or output parameters; see the description of the function keyword.

The last use of parenthesis is for specifying some elements of an
array or list variable.

Arrays: In LME, any numeric object is considered as an array of
two dimensions or more. Therefore, at least two indices are required
to specify a single element; the first index specifies the row, the sec-
ond the column, and so on. In some circumstances, however, it is
convenient to consider an array as a vector, be it a column vector, a
row vector, or even a matrix whose elements are indexed row-wise (or
on some platforms). For this way of handling arrays, a single index is
specified.

The first valid value of an index is always 1. The array whose ele-
ments are extracted is usually a variable, but can be any expression:
an expression like [1,2;3,4](1,2) is valid and gives the 2nd element
of the first row, i.e. 3.

In all indexing operations, several indices can be specified simulta-
neously to extract more than one element along a dimension. A single
colon means all the elements along the corresponding dimension.

Instead of indices, the elements to be extracted can be selected by
the true values in a logical array of the same size as the variable (the
result is a column vector), or in a logical vector of the same size as the
corresponding dimension. Calculating a boolean expression based on

132 Sysquake Remote ©1999-2016, Calerga Sàrl

the variable itself used as a whole is the easiest way to get a logical
array.

Variable indexing can be used in an expression or in the left hand
side of an assignment. In this latter case, the right hand size can be
one of the following:

– An array of the same size as the extracted elements.

– A scalar, which is assigned to each selected element of the vari-
able.

– An empty matrix [], which means that the selected elements
should be deleted. Only whole rows or columns (or (hyper)planes
for arrays of more dimensions) can be deleted; i.e. a(2:5,:)
= [] and b([3,6:8]) = [] (if b is a row or column vector) are
legal, while c(2,3) = [] is not.

When indices are larger than the dimensions of the variable, the vari-
able is expanded; new elements are set to 0 for numeric arrays, false
for logical arrays, the nul character for character array, and the empty
array [] for cell arrays.

Lists: In LME, lists have one dimension; thus a single index is re-
quired. Be it with a single index or a vector of indices, indexed el-
ements are grouped in a list. New elements, also provided in a list,
can be assigned to indexed elements; if the list to be assigned has a
single element, the element is assigned to every indexed element of
the variable.

Cell arrays: cell arrays are subscripted like other arrays. The re-
sult, or the right-hand side of an assignment, is also a cell array, or
a list for the syntax v(select) (lists are to cell arrays what column
vectors are to non-cell arrays). To create a single logical array for se-
lecting some elements, function cellfun may be useful. To remove
cells, the right-hand side of the assignment can be the empty list {}
or the empty array [].

Structure arrays: access to structure array fields combines sub-
scripting with parenthesis and structure field access with dot notation.
When the field is not specified, parenthesis indexing returns a struc-
ture or structure array. When indexing results in multiple elements
and a field is specified, the result is a value sequence.

Examples
Ordering evaluation:

(1+2)*3
9

Extracting a single element, a row, and a column:

LME Reference — operators 133

a = [1,2,3; 4,5,6];
a(2,3)
6

a(2,:)
4 5 6

a(:,3)
3
6

Extracting a sub-array with contiguous rows and non-contiguous
columns:

a(1:2,[1,3])
1 3
4 6

Array elements as a vector:

a(3:5)
3
4
5

a(:)
1
2
3
4
5
6

Selections of elements where a logical expression is true:

a(a>=5)
5
6

a(:, sum(a,1) > 6)
2 3
5 6

Assignment:

a(1,5) = 99
a =
1 2 3 0 99
4 5 6 0 0

Extraction and assignment of elements in a list:

a = {1,[2,7,3],’abc’,magic(3),’x’};
a([2,5])
{[2,7,3],’x’}

134 Sysquake Remote ©1999-2016, Calerga Sàrl

a([2,5]) = {’ab’,’cde’}
a =
{1,’ab’,’abc’,[8,1,6;3,5,7;4,9,2],’cde’}

a([2,5]) = {[3,9]}
a =
{1,[3,9],’abc’,[8,1,6;3,5,7;4,9,2],[3,9]}

Removing elements in a list ({} and [] have the same effect here):

a(4) = {}
a =
{1,[3,9],’abc’,[3,9]}

a([1, 3]) = []
a =
{[3,9],[3,9]}

Replacing NaN with empty arrays in a cell array:

C = {’abc’, nan; 2, false};
C(cellfun(@(x) any(isnan(x(:))), C)) = {[]};

Element in a structure array:

SA = structarray(’a’,{1,[2,3]},’b’,{’ab’,’cde’});
SA(1).a
2 3

SA(2).b = ’X’;

When assigning a new field and/or a new element of a structure array,
the new field is added to each element and the size of the array is
expanded; fields are initialized to the empty array [].

SA(3).c = true;
SA(1).c
[]

See also
Operator {}, operator ., end, reshape, variable assignment, operator
[], subsref, subsasgn, cellfun

Operator []

Brackets.

Syntax
[matrix_elements]

LME Reference — operators 135

Description
A pair of brackets is used to define a 2-d array given by its elements
or by submatrices. The operator , (or spaces) is used to separate
elements on the same row, and the operator ; (or newline) is used to
separate rows. Since the space is considered as a separator when it is
in the direct scope of brackets, it should not be used at the top level
of expressions; as long as this rule is observed, each element can be
given by an expression.

Inside brackets, commas and semicolons are interpreted as calls to
horzcat and vertcat. Brackets themselves have no other effect than
changing the meaning of commas, semicolons, spaces, and new lines:
the expression [1], for instance, is strictly equivalent to 1. The empty
array [] is a special case.

Since horzcat and vertcat also accept cell arrays, brackets can
be used to concatenate cell arrays, too.

Examples
[1, 2, 3+5]
1 2 8

[1:3; 2 5 , 9]
1 2 3
2 5 9

[5-2, 3]
3 3

[5 -2, 3]
5 -2 3

[(5 -2), 3]
3 3

[1 2
3 4]
1 2
3 4

[]
[]

Concatenation of two cell arrays:

C1 = {1; 2};
C2 = {’ab’; false};
[C1, C2]
2x2 cell array

Compare this with the effect of braces, where elements are not con-
catenated but used as cells:

{C1, C2}
1x2 cell array

136 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
Operator {}, operator (), operator ,, operator ;

Operator {}

Braces.

Syntax
{list_elements}
{cells}
{struct_elements}
v{index}
v{index1, index2, ...}
v{index} = expr
fun(...,v{:},...)

Description
A pair of braces is used to define a list, a cell array, a struct, or an
n-by-1 struct array given by its elements. When no element has a
name (a named element is written name=value where value can be
any expression), the result is a list or a celle array; when all elements
have a name, the result is a struct or a struct array.

In a list, the operator , is used to separate elements. In a cell array,
the operator , is used to separate cells on the same row; the operator
; is used to separate rows. Braces without semicolons produce a list;
braces with semicolon(s) produce a cell array.

In a struct, the operator , is used to separate fields. In a struct
array, the operator ; is used to separate elements.

v{index} is the element of list variable v whose index is given.
index must be an integer between 1 (for the first element) and
length(v) (for the last element). v{index} may be used in an
expression to extract an element, or on the left hand-side of the
equal sign to assign a new value to an element. Unless it is the target
of an assignment, v may also be the result of an expression. If v is a
cell array, v{index} is the element number index.

v{index1,index2,...} gives the specified cell of a cell array.
v itself may be an element or a field in a larger variable, provided

it is a list; i.e. complicated assignments like a{2}.f{3}(2,5)=3 are
accepted. In an assignment, when the index (or indices) are larger
than the list or cell array size, the variable is expanded with empty
arrays [].

In the list of the input arguments of a function call, v{:} is replaced
with its elements. v may be a list variable or the result of an expres-
sion.

LME Reference — operators 137

Examples
x = {1, ’abc’, [3,5;7,1]}
x =
{1,string,real 2x2}

x{3}
3 5
7 1

x{2} = 2+3j
x =
{1,2+3j,real 2x2}

x{3} = {2}
x =
{1,2+3j,list}

x{end+1} = 123
x =
{1,2+3j,list,123}

C = {1, false; ’ab’, magic(3)}
2x2 cell array

C{2, 1}
ab

a = {1, 3:5};
fprintf(’%d ’, a{:}, 99);
1 3 4 5 99

s = {a=1, b=’abc’};
s.a
1

S = {a=1, b=’abc’; a=false, b=1:5};
size(S)
2 1

S(2).b
1 2 3 4 5

S = {a=1; b=2};
S(1).b
[]

See also
operator ,, operator [], operator (), operator ;, operator ., subsref,
subsasgn

Operator . (dot)

Structure field access.

Syntax
v.field
v.field = expr

138 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
A dot is used to access a field in a structure. In v.field, v is the name
of a variable which contains a structure, and field is the name of the
field. In expressions, v.field gives the value of the field; it is an error
if it does not exist. As the target of an assignment, the value of the
field is replaced if it exists, or a new field is added otherwise; if v itself
is not defined, a structure is created from scratch.

v itself may be an element or a field in a larger variable, provided
it is a structure (or does not exists in an assignment); i.e. complicated
assignments like a{2}.f{3}(2,5)=3 are accepted.

If V is a structure array, V.field is a value sequence which contains
the specified field of each element of V.

The syntax v.(expr) permits to specify the field name
dynamically at run-time, as the result of evaluating expression expr.
v(’f’) is equivalent to v.f. This syntax is more elegant than
functions getfield and setfield.

Examples
s.f = 2
s =
f: 2

s.g = ’hello’
s =
f: 2
s: string

s.f = 1:s.f
s =
f: real 1x2
g: string

See also
Operator (), operator {}, getfield setfield, subsref, subsasgn

Operator +

Addition.

Syntax
x + y
M1 + M2
M + x
plus(x, y)
+x
+M
uplus(x)

LME Reference — operators 139

Description
With two operands, both operands are added together. If both
operands are matrices with a size different from 1-by-1, their size
must be equal; the addition is performed element-wise. If one
operand is a scalar, it is added to each element of the other operand.

With one operand, no operation is performed, except that the result
is converted to a number if it was a string or a logical value, like with all
mathematical operators and functions. For strings, each character is
replaced with its numeric encoding. The prefix + is actually a synonym
of double.

plus(x,y) is equivalent to x+y, and uplus(x) to +x. They can be
used to redefine these operators for objects.

Example
2 + 3

5
[1 2] + [3 5]
4 7

[3 4] + 2
5 6

See also
operator -, sum, addpol, double

Operator -

Subtraction or negation.

Syntax
x - y
M1 - M2
M - x
minus(x, y)
-x
-M
uminus(x)

Description
With two operands, the second operand is subtracted from the first
operand. If both operands are matrices with a size different from 1-
by-1, their size must be equal; the subtraction is performed element-
wise. If one operand is a scalar, it is repeated to match the size of the
other operand.

With one operand, the sign of each element is changed.
minus(x,y) is equivalent to x-y, and uminus(x) to -x. They can

be used to redefine these operators for objects.

140 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
2 - 3
-1

[1 2] - [3 5]
-2 -3

[3 4] - 2
1 2

-[2 2-3j]
-2 -2+3j

See also
operator +, conj

Operator *

Matrix multiplication.

Syntax
x * y
M1 * M2
M * x
mtimes(x, y)

Description
x*y multiplies the operands together. Operands can be scalars (plain
arithmetic product), matrices (matrix product), or mixed scalar and
matrix.

mtimes(x,y) is equivalent to x*y. It can be used to redefine this
operator for objects.

Example
2 * 3
6

[1,2;3,4] * [3;5]
13
29

[3 4] * 2
6 8

See also
operator .*, operator /, prod

Operator .*

Scalar multiplication.

LME Reference — operators 141

Syntax
x .* y
M1 .* M2
M .* x
times(x, y)

Description

x.*y is the element-wise multiplication. If both operands are matrices
with a size different from 1-by-1, their size must be equal; the mul-
tiplication is performed element-wise. If one operand is a scalar, it
multiplies each element of the other operand.

times(x,y) is equivalent to x.*y. It can be used to redefine this
operator for objects.

Example
[1 2] .* [3 5]
3 10

[3 4] .* 2
6 8

See also

operator *, operator ./, operator .̂

Operator /

Matrix right division.

Syntax
a / b
A / B
A / b
mrdivide(a, b)

Description

a/b divides the first operand by the second operand. If the second
operand is a scalar, it divides each element of the first operand. Oth-
erwise, it must be a square matrix; M1/M2 is equivalent to M1*inv(M2).

mrdivide(x,y) is equivalent to x/y. It can be used to redefine this
operator for objects.

142 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
9 / 3
3

[2,6] / [1,2;3,4]
5 -1

[4 10] / 2
2 5

See also
operator \, inv, operator ./, deconv

Operator ./

Scalar right division.

Syntax
x ./ y
M1 ./ M2
M ./ x
x ./ M
rdivide(x, y)

Description
The first operand is divided by the second operand. If both operands
are matrices with a size different from 1-by-1, their size must be equal;
the division is performed element-wise. If one operand is a scalar, it is
repeated to match the size of the other operand.

rdivide(x,y) is equivalent to x./y. It can be used to redefine this
operator for objects.

Examples
[3 10] ./ [3 5]
1 2

[4 8] ./ 2
2 4

10 ./ [5 2]
2 5

See also
operator /, operator .*, operator .̂

Operator \
Matrix left division.

LME Reference — operators 143

Syntax
x \ y
M1 \ M2
x \ M
mldivide(x, y)

Description
x\y divides the second operand by the first operand. If the first
operand is a scalar, it divides each element of the second operand.
Otherwise, it must be a square matrix; M1\M2 is equivalent to
inv(M1)*M2.

mldivide(x,y) is equivalent to x\y. It can be used to redefine this
operator for objects.

Examples
3 \ 9
3

[1,2;3,4] \ [2;6]
2
0

2 \ [4 10]
2 5

See also
operator /, inv, operator .\

Operator .\

Scalar left division.

Syntax
M1 .\ M2
M1 .\ x
ldivide(x, y)

Description
The second operand is divided by the first operand. If both operands
are matrices with a size different from 1-by-1, their size must be equal;
the division is performed element-wise. If one operand is a scalar, it is
repeated to match the size of the other operand.

ldivide(x,y) is equivalent to x.\y. It can be used to redefine this
operator for objects.

144 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
[1 2 3] .\ [10 11 12]
10 5.5 4

See also

operator \, operator ./

Operator ˆ

Matrix power.

Syntax
x ˆ y
M ˆ y
x ˆ M
mpower(x, y)

Description

x̂ y calculates x to the y power, provided that either

– both operands are scalar;

– the first operand is a square matrix and the second operand is a
scalar;

– or the first operand is a scalar and the second operand is a square
matrix.

Other cases yield an error.
mpower(x,y) is equivalent to x̂ y. It can be used to redefine this

operator for objects.

Examples
2 ˆ 3
8

[1,2;3,4] ˆ 2
7 10
15 22

2 ˆ [1,2;3,4]
10.4827 14.1519
21.2278 31.7106

LME Reference — operators 145

Algorithms
If the first operand is a scalar and the second a square matrix, the
matrix exponential is used. The result is expm(log(x)*M).

If the first operand is a square matrix and the second a scalar, un-
less for small real integers, the same algorithm as for matrix functions
is used, i.e. a complex Schur decomposition followed by the Parlett
method. The result is funm(M, @(x) x̂ y).

See also
operator .̂ , expm, funm

Operator .̂

Scalar power.

Syntax
M1 .̂ M2
x .̂ M
M .̂ x
power(x, y)

Description
M1.̂ M2 calculates M1 to the M2 power, element-wise. Both arguments
must have the same size, unless one of them is a scalar.

power(x,y) is equivalent to x.̂ y. It can be used to redefine this
operator for objects.

Examples
[1,2;3,4].̂ 2
1 4
9 16

[1,2,3].̂ [5,4,3]
1 16 27

See also
operator ,̂ exp

Operator ’

Complex conjugate transpose.

Syntax
M’
ctranspose(M)

146 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
M’ is the transpose of the real matrix M, i.e. columns and rows are per-
muted. If M is complex, the result is the complex conjugate transpose
of M. If M is an array with multiple dimensions, the first two dimensions
are permuted.

ctranspose(M) is equivalent to M’. It can be used to redefine this
operator for objects.

Examples
[1,2;3,4]’
1 3
2 4

[1+2j, 3-4j]’
1-2j
3+4j

See also
operator .’, conj

Operator .’

Transpose.

Syntax
M.’
transpose(M)

Description
M.’ is the transpose of the matrix M, i.e. columns and rows are per-
muted. M can be real or complex. If M is an array with multiple dimen-
sions, the first two dimensions are permuted.

transpose(M) is equivalent to M.’. It can be used to redefine this
operator for objects.

Example
[1,2;3,4].’
1 3
2 4

[1+2j, 3-4j].’
1+2j
3-4j

See also
operator ’, permute, fliplr, flipud, rot90

LME Reference — operators 147

Operator ==

Equality.

Syntax
x == y
eq(x, y)

Description
x == y is true if x is equal to y, and false otherwise. Comparing NaN
(not a number) to any number yields false, including to NaN. If x and/or
y is an array, the comparison is performed element-wise and the result
has the same size.

eq(x,y) is equivalent to x==y. It can be used to redefine this oper-
ator for objects.

Example
1 == 1
true

1 == 1 + eps
false

1 == 1 + eps / 2
true

inf == inf
true

nan == nan
false

[1,2,3] == [1,3,3]
T F T

See also
operator =̃, operator <, operator <=, operator >, operator >=, opera-
tor ===, operator =̃=, strcmp

Operator ===

Object equality.

Syntax
a === b
same(a, b)

148 Sysquake Remote ©1999-2016, Calerga Sàrl

Description

a === b is true if a is the same as b, and false otherwise. a and b must
have exactly the same internal representation to be considered as
equal; with IEEE floating-point numbers, nan===nan is true and 0===-0
is false. Contrary to the equality operator ==, === returns a single
boolean even if its operands are arrays.

same(a,b) is equivalent to a===b.

Example
(1:5) === (1:5)
true

(1:5) == (1:5)
T T T T T

[1,2,3] === [4,5]
false

[1,2,3] == [4,5]
Incompatible size

nan === nan
true

nan == nan
false

See also

operator =̃=, operator ==, operator =̃, operator <, operator <=, oper-
ator >, operator >=, operator ==, operator =̃, strcmp

Operator =̃

Inequality.

Syntax
x =̃ y
ne(x, y)

Description

x =̃ y is true if x is not equal to y, and false otherwise. Comparing
NaN (not a number) to any number yields true, including to NaN. If x
and/or y is an array, the comparison is performed element-wise and
the result has the same size.

ne(x,y) is equivalent to x̃ =y. It can be used to redefine this oper-
ator for objects.

LME Reference — operators 149

Example
1 =̃ 1
false

inf =̃ inf
false

nan =̃ nan
true

[1,2,3] =̃ [1,3,3]
F T F

See also
operator ==, operator <, operator <=, operator >, operator >=, oper-
ator ===, operator =̃=, strcmp

Operator =̃=

Object inequality.

Syntax
a =̃= b
unsame(a, b)

Description
a =̃= b is true if a is not the same as b, and false otherwise. a and b
must have exactly the same internal representation to be considered
as equal; with IEEE numbers, nañ ==nan is false and 0̃ ==-0 is true.
Contrary to the inequality operator, =̃= returns a single boolean even
if its operands are arrays.

unsame(a,b) is equivalent to ã ==b.

Example
(1:5) =̃= (1:5)
false

(1:5) =̃ (1:5)
F F F F F

[1,2,3] =̃= [4,5]
true

[1,2,3] =̃ [4,5]
Incompatible size

nan =̃= nan
false

nan =̃ nan
true

150 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
operator ===, operator ==, operator =̃, operator <, operator <=, oper-
ator >, operator >=, strcmp

Operator <

Less than.

Syntax
x < y
lt(x, y)

Description
x < y is true if x is less than y, and false otherwise. Comparing NaN
(not a number) to any number yields false, including to NaN. If x and/or
y is an array, the comparison is performed element-wise and the result
has the same size.

lt(x,y) is equivalent to x<y. It can be used to redefine this oper-
ator for objects.

Example
[2,3,4] < [2,4,2]
F T F

See also
operator ==, operator =̃, operator <=, operator >, operator >=

Operator >

Greater than.

Syntax
x > y
gt(x, y)

Description
x > y is true if x is greater than y, and false otherwise. Comparing
NaN (not a number) to any number yields false, including to NaN. If x
and/or y is an array, the comparison is performed element-wise and
the result has the same size.

gt(x,y) is equivalent to x>y. It can be used to redefine this oper-
ator for objects.

LME Reference — operators 151

Example
[2,3,4] > [2,4,2]
F F T

See also

operator ==, operator =̃, operator <, operator <=, operator >=

Operator <=

Less or equal to.

Syntax
x <= y
le(x, y)

Description

x <= y is true if x is less than or equal to y, and false otherwise.
Comparing NaN (not a number) to any number yields false, including
to NaN. If x and/or y is an array, the comparison is performed element-
wise and the result has the same size.

le(x,y) is equivalent to x<=y. It can be used to redefine this op-
erator for objects.

Example
[2,3,4] <= [2,4,2]
T T F

See also

operator ==, operator =̃, operator <, operator >, operator >=

Operator >=

Greater or equal to.

Syntax
x >= y
ge(x, y)

152 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
x >= y is true if x is greater than or equal to y, and false otherwise.
Comparing NaN (not a number) to any number yields false, including
to NaN. If x and/or y is an array, the comparison is performed element-
wise and the result has the same size.

ge(x,y) is equivalent to x>=y. It can be used to redefine this op-
erator for objects.

Example
[2,3,4] >= [2,4,2]
T F T

See also
operator ==, operator =̃, operator <, operator <=, operator >

Operator ˜

Not.

Syntax
b̃
not(b)

Description
b̃ is false (logical 0) if b is different from 0 or false, and true otherwise.
If b is an array, the operation is performed on each element.

not(b) is equivalent to b̃. It can be used to redefine this operator
for objects.

Character ˜ can also be used as a placeholder for unused argu-
ments.

Examples
t̃rue
false

[̃1,0,3,false]
F T F T

See also
operator =̃, bitcmp, function (unused arguments)

Operator &

And.

LME Reference — operators 153

Syntax
b1 & b2
and(b1, b2)

Description
b1&b2 performs the logical AND operation between the corresponding
elements of b1 and b2; the result is true (logical 1) if both operands
are different from false or 0, and false (logical 0) otherwise.

and(b1,b2) is equivalent to b1&b2. It can be used to redefine this
operator for objects.

Example
[false, false, true, true] & [false, true, false, true]
F F F T

See also
operator |, xor, operator ,̃ operator &&, all

Operator &&

And with lazy evaluation.

Syntax
b1 && b2

Description
b1&&b2 is b1 if b1 is false, and b2 otherwise. Like with if and while
statements, b1 is true if it is a nonempty array with only non-zero
elements. b2 is evaluated only if b1 is true.

b1&&b2&&...&&bn returns the last operand which is false (remain-
ing operands are not evaluated), or the last one.

Example
Boolean value which is true if the vector v is made of pairs of equal
values:

mod(length(v),2) == 0 && v(1:2:end) == v(2:2:end)

The second operand of && is evaluated only if the length is even.

See also
operator ||, operator ?, operator &, if

154 Sysquake Remote ©1999-2016, Calerga Sàrl

Operator |

Or.

Syntax
b1 | b2
or(b1, b2)

Description
b1|b2 performs the logical OR operation between the corresponding
elements of b1 and b2; the result is false (logical 0) if both operands
are false or 0, and true (logical 1) otherwise.

or(b1,b2) is equivalent to b1|b2. It can be used to redefine this
operator for objects.

Example
[false, false, true, true] | [false, true, false, true]
F T T T

See also
operator &, xor, operator ,̃ operator ||, any

Operator ||

Or with lazy evaluation.

Syntax
b1 || b2

Description
b1||b2 is b1 if b1 is true, and b2 otherwise. Like with if and while
statements, b1 is true if it is a nonempty array with only non-zero
elements. b2 is evaluated only if b1 is false.

b1||b2||...||bn returns the last operand which is true (remaining
operands are not evaluated), or the last one.

Example
Boolean value which is true if the vector v is empty or if its first ele-
ment is NaN:

isempty(v) || isnan(v(1))

LME Reference — operators 155

See also
operator &&, operator ?, operator |, if

Operator ?

Alternative with lazy evaluation.

Syntax
b ? x : y

Description
b?x:y is x if b is true, and y otherwise. Like with if and while state-
ments, b is true if it is a nonempty array with only non-zero elements.
Only one of x and y is evaluated depending on b.

Operators ? and : have the same priority; parenthesis or brackets
should be used if e.g. x or y is a range.

Example
Element of a vector v, or default value 5 if the index ind is out of
range:

ind < 1 || ind > length(v) ? 5 : v(ind)

See also
operator &&, operator ||, if

Operator ,

Horizontal matrix concatenation.

Syntax
[M1, M2, ...]
[M1 M2 ...]
horzcat(M1, M2, ...)

Description
Between brackets, the comma is used to separate elements on the
same row in a matrix. Elements can be scalars, vector, arrays, cell
arrays, or structures; their number of rows must be the same, unless
one of them is an empty array. For arrays with more than 2 dimen-
sions, all dimensions except dimension 2 (number of columns) must
match.

156 Sysquake Remote ©1999-2016, Calerga Sàrl

Outside brackets or between parenthesis, the comma is used to
separate statements or the arguments of functions.

horzcat(M1,M2,...) is equivalent to [M1,M2,...]. It can be used
to redefine this operator for objects. It accepts any number of in-
put arguments; horzcat() is the real double empty array [], and
horzcat(M) is M.

Between braces, the comma separates cells on the same row.

Examples
[1,2]
1 2

[[3;5],ones(2)]
3 1 1
5 1 1

[’abc’,’def’]
abcdef

See also

operator [], operator ;, cat, join, operator {}

Operator ;

Vertical matrix concatenation.

Syntax
[M1; M2]
vertcat(M1, M2)

Description

Between brackets, the semicolon is used to separate rows in a matrix.
Rows can be scalars, vector, arrays, cell arrays, or structures; their
number of columns must be the same, unless one of them is an empty
array. For arrays with more than 2 dimensions, all dimensions except
dimension 1 (number of rows) must match.

Outside brackets, the comma is used to separate statements; they
loose any meaning between parenthesis and give a syntax error.

vertcat(M1,M2) is equivalent to [M1;M2]. It can be used to rede-
fine this operator for objects.

Between braces, the semicolon separates rows of cells.

LME Reference — operators 157

Examples
[1;2]
1
2

[1:5;3,2,4,5,1]
1 2 3 4 5
3 2 4 5 1

[’abc’;’def’]
abc
def

See also
operator [], operator ,, join, operator {}

Operator :

Range.

Syntax
x1:x2
x1:step:x2
colon(x1,x2)
colon(x1,step,x2)

Description
x1:x2 gives a row vector with the elements x1, x1+1, x1+2, etc. until
x2. The last element is equal to x2 only if x2-x1 is an integer, and
smaller otherwise. If x2<x1, the result is an empty matrix.

x1:step:x2 gives a row vector with the elements x1, x1+step,
x1+2*step, etc. until x2. The last element is equal to x2 only if
(x2-x1)/step is an integer. With fractional numbers, rounding er-
rors may cause x2 to be discarded even if (x2-x1)/step is "almost"
an integer. If x2*sign(step)<x1*sign(step), the result is an empty
matrix.

If x1 or step is complex, a complex vector is produced, with the
expected contents. The following algorithm is used to generate each
element:

z = x1
while real((x2 - z) * conj(step)) >= 0

append z to the result
z = z + step

end

158 Sysquake Remote ©1999-2016, Calerga Sàrl

Values are added until they go beyond the projection of x2 onto the
straight line defined by x1 and direction step. If x2-x1 and step are
orthogonal, it is attempted to produce an infinite number of elements,
which will obviously trigger an out of memory error. This is similar to
having a null step in the real case.

Note that the default step value is always 1 for consistency with
real values. Choosing for instance sign(x2-x1) would have made the
generation of lists of indices more difficult. Hence for a vector of purely
imaginary numbers, always specify a step.

colon(x1,x2) is equivalent to x1:x2, and colon(x1,step,x2) to
x1:step:x2. It can be used to redefine this operator for objects.

The colon character is also used to separate the alternatives of a
conditional expression b?x:y.

Example
2:5
2 3 4 5

2:5.3
2 3 4 5

3:3
3

3:2
[]

2:2:8
2 4 6 8

5:-1:2
5 4 3 2

0:1j:10j
0 1j 2j 3j 4j 5j 6j 7j 8j 9j 10j

1:1+1j:5+4j
1 2+1j 3+2j 4+3j 5+4j

0:1+1j:5
0 1+1j 2+2j 3+3j 4+4j 5+5j

See also
repmat, operator ?

Operator @

Function reference or anonymous function.

Syntax
@fun
@(arguments) expression

LME Reference — operators 159

Description
@fun gives a reference to function fun which can be used wherever an
inline function can. Its main use is as the argument of functions like
feval or integral, but it may also be stored in lists, cell arrays, or
structures. A reference cannot be cast to a number (unlike characters
or logical values), nor can it be stored in a numeric array. The function
reference of an operator must use its function name, such as @plus.

Anonymous functions are an alternative, more compact syntax for
inline functions. In @(args) expr, args is a list of input arguments
and expr is an expression which contains two kinds of variables:

– input arguments, provided when the anonymous expression is
executed;

– captured variables (all variables which do not appear in the list
of input arguments), which have the value of variables of the
same name existing when and where the anonymous function is
created. These values are fixed.

If the top-level element of the anonymous function is itself a function,
multiple output arguments can be specified for the call of the anony-
mous function, as if a direct call was performed. Anonymous functions
which do not return any output are also valid.

Anonymous functions may not have input arguments with default
values (@(x=2)x+5 is invalid).

Anonymous functions are a convenient way to provide the glue be-
tween functions like fzero and ode45 and the function they accept as
argument. Additional parameters can be passed directly in the anony-
mous function with captured variables, instead of being supplied as
additional arguments; the code becomes clearer.

Examples
Function reference:

integral(@sin, 0, pi)
2

Anonymous function:

a = 2;
fun = @(x) sin(a * x);
fun(3)
-0.2794

integral(fun, 0, 2)
0.8268

Without anonymous function, parameter a should be passed as an ad-
ditional argument after all the input arguments defined for integral,
including those which are optional when parameters are missing:

160 Sysquake Remote ©1999-2016, Calerga Sàrl

integral(inline(’sin(a * x)’, ’x’, ’a’), 0, 2, [], false, a)
0.8268

Anonymous functions are actually stored as inline functions with all
captured variables:

dumpvar(fun)
inline(’function y=f(a,x);y=sin(a*x);’,2)

Anonymous function with multiple output arguments:

fun = @(A) size(A);
s = fun(ones(2,3))
s =
2 3

(m, n) = fun(ones(2,3))
m =
2

n =
3

See also
fun2str, str2fun, inline, feval, apply

5.16 Mathematical Functions

abs

Absolute value.

Syntax
x = abs(z)

Description
abs takes the absolute value of each element of its argument. The
result is an array of the same size as the argument; each element is
non-negative.

Example
abs([2,-3,0,3+4j]
2 3 0 5

See also
angle, sign, real, imag, hypot

LME Reference — mathematical functions 161

acos

Arc cosine.

Syntax
y = acos(x)

Description
acos(x) gives the arc cosine of x, which is complex if x is complex or
if abs(x)>1.

Examples
acos(2)
0+1.3170j

acos([0,1+2j])
1.5708 1.1437-1.5286j

See also
cos, asin, acosh

acosd acotd acscd asecd asind atand atan2d

Inverse trigonometric functions with angles in degrees.

Syntax
y = acosd(x)
y = acotd(x)
y = acscd(x)
y = asecd(x)
y = asind(x)
y = atand(x)
z = atan2d(y, x)

Description
Inverse trigonometric functions whose name ends with a d give a re-
sult expressed in degrees instead of radians.

Examples
acosd(0.5)
60.0000

acos(0.5) * 180 / pi
60.0000

162 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
cosd, cotd, cscd, secd, sind, tand, acos, acot, acsc, asec, asin,
atan, atan2

acosh

Inverse hyperbolic cosine.

Syntax
y = acosh(x)

Description
acosh(x) gives the inverse hyperbolic cosine of x, which is complex if
x is complex or if x<1.

Examples
acosh(2)
1.3170

acosh([0,1+2j])
0+1.5708j 1.5286+1.1437j

See also
cosh, asinh, acos

acot

Inverse cotangent.

Syntax
y = acot(x)

Description
acot(x) gives the inverse cotangent of x, which is complex if x is.

See also
cot, acoth, cos

acoth

Inverse hyperbolic cotangent.

LME Reference — mathematical functions 163

Syntax
y = acoth(x)

Description
acoth(x) gives the inverse hyperbolic cotangent of x, which is complex
if x is complex or is in the range (-1,1).

See also
coth, acot, atanh

acsc

Inverse cosecant.

Syntax
y = acsc(x)

Description
acsc(x) gives the inverse cosecant of x, which is complex if x is com-
plex or is in the range (-1,1).

See also
csc, acsch, asin

acsch

Inverse hyperbolic cosecant.

Syntax
y = acsch(x)

Description
acsch(x) gives the inverse hyperbolic cosecant of x, which is complex
if x is.

See also
csc, acsc, asinh

angle

Phase angle of a complex number.

164 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
phi = angle(z)

Description
angle(z) gives the phase of the complex number z, i.e. the angle be-
tween the positive real axis and a line joining the origin to z. angle(0)
is 0.

Examples
angle(1+3j)
1.2490

angle([0,1,-1])
0 0 3.1416

See also
abs, sign, atan2

asec

Inverse secant.

Syntax
y = asec(x)

Description
asec(x) gives the inverse secant of x, which is complex if x is complex
or is in the range (-1,1).

See also
sec, asech, acos

asech

Inverse hyperbolic secant.

Syntax
y = asech(x)

Description
asech(x) gives the inverse hyperbolic secant of x, which is complex if
x is complex or strictly negative.

LME Reference — mathematical functions 165

See also
sech, asec, acosh

asin

Arc sine.

Syntax
y = asin(x)

Description
asin(x) gives the arc sine of x, which is complex if x is complex or if
abs(x)>1.

Examples
asin(0.5)
0.5236

asin(2)
1.5708-1.317j

See also
sin, acos, asinh

asinh

Inverse hyperbolic sine.

Syntax
y = asinh(x)

Description
asinh(x) gives the inverse hyperbolic sine of x, which is complex if x
is complex.

Examples
asinh(2)
1.4436

asinh([0,1+2j])
0 1.8055+1.7359j

See also
sinh, acosh, asin

166 Sysquake Remote ©1999-2016, Calerga Sàrl

atan

Arc tangent.

Syntax
y = atan(x)

Description
atan(x) gives the arc tangent of x, which is complex if x is complex.

Example
atan(1)
0.7854

See also
tan, asin, acos, atan2, atanh

atan2

Direction of a point given by its Cartesian coordinates.

Syntax
phi = atan2(y,x)

Description
atan2(y,x) gives the direction of a point given by its Cartesian coor-
dinates x and y. Imaginary component of complex numbers is ignored.
atan2(y,x) is equivalent to atan(y/x) if x>0.

Examples
atan2(1, 1)
0.7854

atan2(-1, -1)
-2.3562

atan2(0, 0)
0

See also
atan, angle

atanh

Inverse hyperbolic tangent.

LME Reference — mathematical functions 167

Syntax
y = atanh(x)

Description
atan(x) gives the inverse hyperbolic tangent of x, which is complex if
x is complex or if abs(x)>1.

Examples
atanh(0.5)
0.5493

atanh(2)
0.5493 + 1.5708j

See also
asinh, acosh, atan

beta

Beta function.

Syntax
y = beta(z,w)

Description
beta(z,w) gives the beta function of z and w. Arguments and result
are real (imaginary part is discarded). The beta function is defined as

B(z,) =
∫ 1

0
tz−1(1 − t)−1 dt

Example
beta(1,2)
0.5

See also
gamma, betaln, betainc

betainc

Incomplete beta function.

168 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
y = betainc(x,z,w)

Description
betainc(x,z,w) gives the incomplete beta function of x, z and w.
Arguments and result are real (imaginary part is discarded). x must
be between 0 and 1. The incomplete beta function is defined as

(z,) =
1

B(z,)

∫

0
tz−1(1 − t)−1 dt

Example
betainc(0.2,1,2)
0.36

See also
beta, betaln, gammainc

betaln

Logarithm of beta function.

Syntax
y = betaln(z,w)

Description
betaln(z,w) gives the logarithm of the beta function of z and w. Ar-
guments and result are real (imaginary part is discarded).

Example
betaln(0.5,2)
0.2877

See also
beta, betainc, gammaln

cart2pol

Cartesian to polar coordinates transform.

LME Reference — mathematical functions 169

Syntax
(phi, r) = cart2pol(x, y)
(phi, r, z) = cart2pol(x, y, z)

Description
(phi,r)=cart2pol(x,y) transforms Cartesian coordinates x and y to
polar coordinates phi and r such that = r cos(φ) and = r sin(φ).

(phi,r,z)=cart2pol(x,y,z) transform Cartesian coordinates to
cylindrical coordinates, leaving z unchanged.

Example
(phi, r) = cart2pol(1, 2)
phi =
1.1071

r =
2.2361

See also
cart2sph, pol2cart, sph2cart, abs, angle

cart2sph

Cartesian to spherical coordinates transform.

Syntax
(phi, theta, r) = cart2sph(x, y, z)

Description
(phi,theta,r)=cart2sph(x,y,z) transforms Cartesian coordinates
x, y, and z to polar coordinates phi, theta, and r such that =
r cos(φ) cos(ϑ), y = r sin(φ) cos(ϑ), and z = r sin(ϑ).

Example
(phi, theta, r) = cart2sph(1, 2, 3)
phi =
1.1071

theta =
0.9303

r =
3.7417

See also
cart2pol, pol2cart, sph2cart

170 Sysquake Remote ©1999-2016, Calerga Sàrl

cast

Type conversion.

Syntax
Y = cast(X, type)

Description
cast(X,type) converts the numeric array X to the type given by string
type, which can be ’double’, ’single’, ’int8’ or any other signed
or unsigned integer type, ’char’, or ’logical’. The number value
is preserved when possible; conversion to integer types discards most
significant bytes. If X is an array, conversion is performed on each
element; the result has the same size. The imaginary part, if any, is
discarded only with conversions to integer types.

Example
cast(pi, ’int8’)
3int8

See also
uint8 and related functions, double, single, typecast

cdf

Cumulative distribution function.

Syntax
y = cdf(distribution,x)
y = cdf(distribution,x,a1)
y = cdf(distribution,x,a1,a2)

Description
cdf(distribution,x) calculates the integral of a probability density
function from −∞ to x. The distribution is specified with the first argu-
ment, a string; case is ignored (’t’ and ’T’ are equivalent). Additional
arguments must be provided for some distributions. The distributions
are given in the table below. Default values for the parameters, when
mentioned, mean that the parameter may be omitted.

LME Reference — mathematical functions 171

Distribution Name Parameters
beta beta a and b
Cauchy cauchy a and b
χ chi deg. of freedom ν
χ2 chi2 deg. of freedom ν
γ gamma shape α and λ
exponential exp mean
F f deg. of freedom ν1 and ν2
half-normal half-normal ϑ
Laplace laplace mean and scale
lognormal logn mean (0) and st. dev. (1)
Nakagami nakagami μ and ω
normal norm mean (0) and st. dev. (1)
Rayleigh rayl b
Student’s T t deg. of freedom ν
uniform unif limits of the range (0 and 1)
Weibull weib shape k and scale λ

Example
cdf(’chi2’, 2.5, 3)
0.5247

integral(@(x) pdf(’chi2’,x,3), 0, 2.5, AbsTol=1e-4)
0.5247

See also
pdf, icdf, random, erf

ceil

Rounding towards +infinity.

Syntax
y = ceil(x)

Description
ceil(x) gives the smallest integer larger than or equal to x. If the
argument is a complex number, the real and imaginary parts are han-
dled separately.

Examples
ceil(2.3)
3

ceil(-2.3)

172 Sysquake Remote ©1999-2016, Calerga Sàrl

-2
ceil(2.3-4.5j)
3-4j

See also
floor, fix, round, roundn

complex

Make a complex number.

Syntax
z = complex(x, y)

Description
complex(x,y) makes a complex number from its real part x and imag-
inary part y. The imaginary part of its input arguments is ignored.

Examples
complex(2, 3)
2 + 3j

complex(1:5, 2)
1+2j 2+2j 3+2j 4+2j 5+2j

See also
real, imag, i

conj

Complex conjugate value.

Syntax
w = conj(z)

Description
conj(z) changes the sign of the imaginary part of the complex num-
ber z.

Example
conj([1+2j,-3-5j,4,0])
1-2j -3+5j 4 0

LME Reference — mathematical functions 173

See also
imag, angle, j, operator -

cos

Cosine.

Syntax
y = cos(x)

Description
cos(x) gives the cosine of x, which is complex if x is complex.

Example
cos([0, 1+2j])
1 2.0327-3.0519j

See also
sin, acos, cosh

cosd cotd cscd secd sind tand

Trigonometric functions with angles in degrees.

Syntax
y = cosd(x)
y = cotd(x)
y = cscd(x)
y = secd(x)
y = sind(x)
y = tand(x)

Description
Trigonometric functions whose name ends with a d have an argument
expressed in degrees instead of radians.

Examples
cosd(20)
0.9397

cos(20 * pi / 180)
0.9397

174 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
acosd, acotd, acscd, asecd, asind, atand, atan2d, cos, cot, csc,
sec, sin, tan

cosh

Hyperbolic cosine.

Syntax
y = cosh(x)

Description
cos(x) gives the hyperbolic cosine of x, which is complex if x is com-
plex.

Example
cosh([0, 1+2j])
1 -0.6421+1.0686j

See also
sinh, acosh, cos

cot

Cotangent.

Syntax
y = cot(x)

Description
cot(x) gives the cotangent of x, which is complex if x is.

See also
acot, coth, tan

coth

Hyperbolic cotangent.

Syntax
y = coth(x)

LME Reference — mathematical functions 175

Description
coth(x) gives the hyperbolic cotangent of x, which is complex if x is.

See also
acoth, cot, tanh

csc

Cosecant.

Syntax
y = csc(x)

Description
csc(x) gives the cosecant of x, which is complex if x is.

See also
acsc, csch, sin

csch

Hyperbolic cosecant.

Syntax
y = csch(x)

Description
csch(x) gives the hyperbolic cosecant of x, which is complex if x is.

See also
acsch, csc, sinh

diln

Dilogarithm.

Syntax
y = diln(x)

176 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
diln(x) gives the dilogarithm, or Spence’s integral, of x. Argument
and result are real (imaginary part is discarded). The dilogarithm is
defined as

diln() =
∫

1

log(t)

t − 1
dt

Example
diln([0.2, 0.7, 10])
-1.0748 -0.3261 3.9507

double

Conversion to double-precision numbers.

Syntax
B = double(A)

Description
double(A) converts number or array A to double precision. A can be
any kind of numeric value (real, complex, or integer), or a character
or logical array.

To keep the integer type of logical and character arrays, the unitary
operator + should be used instead.

Examples
double(uint8(3))
3

double(’AB’)
65 66

islogical(double(1>2))
false

See also
uint8 and related functions, single, cast, operator +, setstr, char,
logical

ellipam

Jacobi elliptic amplitude.

LME Reference — mathematical functions 177

Syntax
phi = ellipam(u, m)
phi = ellipam(u, m, tol)

Description
ellipam(u,m) gives the Jacobi elliptic amplitude phi. Parameter m
must be in [0,1]. The Jacobi elliptic amplitude is the inverse of the
Jacobi integral of the first kind, such that = F(φ|m).

ellipam(u,m,tol) uses tolerance tol; the default tolerance is
eps.

Example
phi = ellipam(2.7, 0.6)
phi =
2.0713

u = ellipf(phi, 0.6)
u =
2.7

See also
ellipf, ellipj

ellipe

Jacobi elliptic integral of the second kind.

Syntax
u = ellipe(phi, m)

Description
ellipe(phi,m) gives the Jacobi elliptic integral of the second kind,
defined as

E(φ|m) =
∫ φ

0

q

1 −m sin2 t dt

Complete elliptic integrals of first and second kinds, with phi=pi/2,
can be obtained with ellipke.

See also
ellipf, ellipke

178 Sysquake Remote ©1999-2016, Calerga Sàrl

ellipf

Jacobi elliptic integral of the first kind.

Syntax
u = ellipf(phi, m)

Description
ellipf(phi,m) gives the Jacobi elliptic integral of the first kind, de-
fined as

F(φ|m) =
∫ φ

0

dt
Æ

1 −m sin2 t

Complete elliptic integrals of first and second kinds, with phi=pi/2,
can be obtained with ellipke.

See also
ellipe, ellipke, ellipam

ellipj

Jacobi elliptic functions.

Syntax
(sn, cn, dn) = ellipj(u, m)
(sn, cn, dn) = ellipj(u, m, tol)

Description
ellipj(u,m) gives the Jacobi elliptic function sn, cn, and dn. Parame-
ter m must be in [0,1]. These functions are based on the Jacobi elliptic
amplitude φ, the inverse of the Jacobi elliptic integral of the first kind
which can be obtained with ellipam):

 = F(φ|m)

sn(|m) = sin(φ)

cn(|m) = cos(φ)

dn(|m) =
Ç

1 −m sin2 φ

ellipj(u,m,tol) uses tolerance tol; the default tolerance is eps.

LME Reference — mathematical functions 179

Examples
(sn, cn, dn) = ellipj(2.7, 0.6)
sn =
0.8773

cn =
-0.4799

dn =
0.7336

sin(ellipam(2.7, 0.6))
0.8773

ellipj(0:5, 0.3)
0.0000 0.8188 0.9713 0.4114 -0.5341 -0.9930

See also
ellipam, ellipke

ellipke

Complete elliptic integral.

Syntax
(K, E) = ellipke(m)
(K, E) = ellipke(m, tol)

Description
(K,E)=ellipke(m) gives the complete elliptic integrals of the first
kind K=F(m) and second kind E=E(m), defined as

F(m) =
∫ π/2

0

dt
Æ

1 −m sin2 t

E(m) =
∫ π/2

0

q

1 −m sin2 t dt

Parameter m must be in [0,1].
ellipke(m,tol) uses tolerance tol; the default tolerance is eps.

Example
(K, E) = ellipke(0.3)
K =
1.7139

E =
1.4454

180 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
ellipj

eps

Difference between 1 and the smallest number x such that x > 1.

Syntax
e = eps
e = eps(x)
e = eps(type)

Description
Because of the floating-point encoding of "real" numbers, the absolute
precision depends on the magnitude of the numbers. The relative
precision is characterized by the number given by eps, which is the
smallest double positive number such that 1+eps can be distinguished
from 1.

eps(x) gives the smallest number e such that x+e has the same
sign as x and can be distinguished from x. It takes into account
whether x is a double or a single number. If x is an array, the re-
sult has the same size; each element corresponds to an element of
the input.

eps(’single’) gives the smallest single positive number e such
that 1single+e can be distinguished from 1single. eps(’double’)
gives the same value as eps without input argument.

Examples
eps
2.2204e-16

1 + eps - 1
2.2204e-16

eps / 2
1.1102e-16

1 + eps / 2 - 1
0

See also
inf, realmin, pi, i, j

erf

Error function.

LME Reference — mathematical functions 181

Syntax
y = erf(x)

Description
erf(x) gives the error function of x. Argument and result are real
(imaginary part is discarded). The error function is defined as

erf() =
2
p
π

∫

0
e−t

2
dt

Example
erf(1)
0.8427

See also
erfc, erfinv

erfc

Complementary error function.

Syntax
y = erfc(x)

Description
erfc(x) gives the complementary error function of x. Argument and
result are real (imaginary part is discarded). The complementary error
function is defined as

erfc() = 1 − erf() =
2
p
π

∫ ∞

e−t

2
dt

Example
erfc(1)
0.1573

See also
erf, erfcx, erfcinv

erfcinv

Inverse complementary error function.

182 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
x = erfcinv(y)

Description
erfcinv(y) gives the value x such that y=erfc(x). Argument and
result are real (imaginary part is discarded). y must be in the range
[0,2]; values outside this range give nan.

Example
y = erfc(0.8)
y =
0.2579

erfcinv(y)
0.8

See also
erfc, erfinv

erfcx

Scaled complementary error function.

Syntax
y = erfcx(x)

Description
erfcx(x) gives the scaled complementary error function of x, defined
as exp(x̂ 2)*erfc(x). Argument and result are real (imaginary part is
discarded).

Example
erfcx(1)
0.4276

See also
erfc

erfinv

Inverse error function.

LME Reference — mathematical functions 183

Syntax
x = erfinv(y)

Description
erfinv(y) gives the value x such that y=erf(x). Argument and result
are real (imaginary part is discarded). y must be in the range [-1,1];
values outside this range give nan.

Example
y = erf(0.8)
y =
0.7421

erfinv(y)
0.8

See also
erf, erfcinv

exp

Exponential.

Syntax
y = exp(x)

Description
exp(x) is the exponential of x, i.e. 2.7182818284590446...̂ x.

Example
exp([0,1,0.5j*pi])
1 2.7183 1j

See also
log, expm1, expm, operator .̂

expm1

Exponential minus one.

Syntax
y = expm1(x)

184 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
expm1(x) is exp(x)-1 with improved precision for small x.

Example
expm1(1e-15)
1e-15

exp(1e-15)-1
1.1102e-15

See also
exp, log1p

factor

Prime factors.

Syntax
v = factor(n)

Description
factor(n) gives a row vector which contains the prime factors of n in
ascending order. Multiple prime factors are repeated.

Example
factor(350)
2 5 5 7

See also
isprime

factorial

Factorial.

Syntax
y = factorial(n)

Description
factorial(n) gives the factorial n! of nonnegative integer n. If the
input argument is negative or noninteger, the result is NaN. The imag-
inary part is ignored.

LME Reference — mathematical functions 185

Examples
factorial(5)
120

factorial([-1,0,1,2,3,3.14])
nan 1 1 2 6 nan

See also
gamma, nchoosek

fix

Rounding towards 0.

Syntax
y = fix(x)

Description
fix(x) truncates the fractional part of x. If the argument is a complex
number, the real and imaginary parts are handled separately.

Examples
fix(2.3)
2

fix(-2.6)
-2

See also
floor, ceil, round

flintmax

Largest of the set of consecutive integers stored as floating point.

Syntax
x = flintmax
x = flintmax(type)

Description
flintmax gives the largest positive integer number in double precision
such that all smaller integers can be represented in double precision.

flintmax(type) gives the largest positive integer number in
double precision if type is ’double’, or in single precision if type is
’single’. flintmax is 2̂ 53 and flintmax(’single’) is 2̂ 24.

186 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
flintmax
9007199254740992

flintmax - 1
9007199254740991

flintmax + 1
9007199254740992

flintmax + 2
9007199254740994

See also
realmax, intmax

floor

Rounding towards -infinity.

Syntax
y = floor(x)

Description
floor(x) gives the largest integer smaller than or equal to x. If the
argument is a complex number, the real and imaginary parts are han-
dled separately.

Examples
floor(2.3)
2

floor(-2.3)
-3

See also
ceil, fix, round, roundn

gamma

Gamma function.

Syntax
y = gamma(x)

LME Reference — mathematical functions 187

Description
gamma(x) gives the gamma function of x. Argument and result are
real (imaginary part is discarded). The gamma function is defined as

() =
∫ ∞

0
t−1e−t dt

For positive integer values, (n) = (n − 1)!.

Examples
gamma(5)
24

gamma(-3)
inf

gamma(-3.5)
0.2701

See also
beta, gammaln, gammainc, factorial

gammainc

Incomplete gamma function.

Syntax
y = gammainc(x,a)

Description
gammainc(x,a) gives the incomplete gamma function of x and a. Ar-
guments and result are real (imaginary part is discarded). x must be
nonnegative. The incomplete gamma function is defined as

gmminc(,) =
1

()

∫

0
t−1e−t dt

Example
gammainc(2,1.5)

0.7385

See also
gamma, gammaln, betainc

188 Sysquake Remote ©1999-2016, Calerga Sàrl

gammaln

Logarithm of gamma function.

Syntax
y = gammaln(x)

Description
gammaln(x) gives the logarithm of the gamma function of x. Argument
and result are real (imaginary part is discarded). gammaln does not rely
on the computation of the gamma function to avoid overflows for large
numbers.

Examples
gammaln(1000)
5905.2204

gamma(1000)
inf

See also
gamma, gammainc, betaln

gcd

Greatest common divisor.

Syntax
q = gcd(a, b)

Description
gcd(a,b) gives the greatest common divisor of integer numbers a and
b.

Example
gcd(72, 56)
8

See also
lcm

LME Reference — mathematical functions 189

goldenratio

Golden ratio constant.

Syntax
x = goldenratio

Description
goldenratio is the golden ration (

p
5+ 1)/2, up to the precision of its

floating-point representation.

Example
goldenratio
1.6180

See also
pi, eps

hypot

Hypotenuse.

Syntax
c = hypot(a, b)

Description
hypot(a,b) gives the square root of the square of a and b, or of their
absolute value if they are complex. The result is always real. hypot
avoids overflow when the result itself does not overflow.

Examples
hypot(3, 4)
5

hypot([1,2,3+4j,inf], 5)
5.099 5.3852 5.831 inf

See also
sqrt, abs, norm

i j

Imaginary unit.

190 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
i
j
1.23e4i
1.23e4j

Description

i or j are the imaginary unit, i.e. the pure imaginary number whose
square is -1. i and j are equivalent.

Used as a suffix appended without space to a number, i or j mark
an imaginary number. They must follow the fractional part and the
exponent, if any; for single-precision numbers, they must precede the
single suffix.

To obtain a complex number i, you can write either i or 1i (or j or
1j). The second way is safer, because variables i and j are often used
as indices and would hide the meaning of the built-in functions. The
expression 1i is always interpreted as an imaginary constant number.

Imaginary numbers are displayed with i or j depending on the op-
tion set with the format command.

Examples
i
1j

format i
2i
2i

2single + 5jsingle
2+5i (single)

See also

imag, complex

icdf

Inverse cumulative distribution function.

Syntax
x = icdf(distribution,p)
x = icdf(distribution,p,a1)
x = icdf(distribution,p,a1,a2)

LME Reference — mathematical functions 191

Description
icdf(distribution,p) calculates the value of x such that
cdf(distribution,x) is p. The distribution is specified with the first
argument, a string; case is ignored (’t’ and ’T’ are equivalent).
Additional arguments must be provided for some distributions. The
distributions are given in the table below. Default values for the
parameters, when mentioned, mean that the parameter may be
omitted.
Distribution Name Parameters
beta beta a and b
χ2 chi2 deg. of freedom ν
γ gamma shape α and scale λ
F f deg. of freedom ν1 and ν2
lognormal logn mean (0) and st. dev. (1)
normal norm mean (0) and st. dev. (1)
Student’s T t deg. of freedom ν
uniform unif limits of the range (0 and 1)

Example
x = icdf(’chi2’, 0.6, 3)
x =
2.9462

cdf(’chi2’, x, 3)
0.6000

See also
cdf, pdf, random

imag

Imaginary part of a complex number.

Syntax
im = imag(z)

Description
imag(z) is the imaginary part of the complex number z, or 0 if z is
real.

Examples
imag(1+2j)
2

imag(1)
0

192 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
real, complex, i, j

inf

Infinity.

Syntax
x = inf
x = Inf
x = inf(n)
x = inf(n1,n2,...)
x = inf([n1,n2,...])
x = inf(..., type)

Description
inf is the number which represents infinity. Most mathematical func-
tions accept infinity as input argument and yield an infinite result if
appropriate. Infinity and minus infinity are two different quantities.

With integer non-negative arguments, inf creates arrays whose
elements are infinity. Arguments are interpreted the same way as
zeros and ones.

The last argument of inf can be a string to specify the type of
the result: ’double’ for double-precision (default), or ’single’ for
single-precision.

Examples
1/inf
0

-inf
-inf

See also
isfinite, isinf, nan, zeros, ones

iscolumn

Test for a column vector.

Syntax
b = iscolumn(x)

LME Reference — mathematical functions 193

Description
iscolumn(x) is true if the input argument is a column vector (real
or complex 2-dimension array of any floating-point or integer type,
character or logical value with second dimension equal to 1, or empty
array), and false otherwise.

Examples
iscolumn([1, 2, 3])
false

iscolumn([1; 2])
true

iscolumn(7)
true

iscolumn([1, 2; 3, 4])
false

See also
isrow, ismatrix, isscalar, isnumeric, size, ndims, length

isfinite

Test for finiteness.

Syntax
b = isfinite(x)

Description
isfinite(x) is true if the input argument is a finite number (neither
infinite nor nan), and false otherwise. The result is performed on each
element of the input argument, and the result has the same size.

Example
isfinite([0,1,nan,inf])
T T F F

See also
isinf, isnan

isfloat

Test for a floating-point object.

194 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
b = isfloat(x)

Description
isfloat(x) is true if the input argument is a floating-point type (dou-
ble or single), and false otherwise.

Examples
isfloat(2)
true

isfloat(2int32)
false

See also
isnumeric, isinteger

isinf

Test for infinity.

Syntax
b = isinf(x)

Description
isinf(x) is true if the input argument is infinite (neither finite nor
nan), and false otherwise. The result is performed on each element of
the input argument, and the result has the same size.

Example
isinf([0,1,nan,inf])
F F F T

See also
isfinite, isnan, inf

isinteger

Test for an integer object.

Syntax
b = isinteger(x)

LME Reference — mathematical functions 195

Description
isinteger(x) is true if the input argument is an integer type (includ-
ing char and logical), and false otherwise.

Examples
isinteger(2int16)
true

isinteger(false)
true

isinteger(’abc’)
true

isinteger(3)
false

See also
isnumeric, isfloat

ismatrix

Test for a matrix.

Syntax
b = ismatrix(x)

Description
ismatrix(x) is true if the input argument is a matrix (real or complex
2-dimension array of any floating-point or integer type, character or
logical value with, or empty array), and false otherwise.

Examples
ismatrix([1, 2, 3])
true

ismatrix([1; 2])
true

ismatrix(7)
true

ismatrix([1, 2; 3, 4])
true

ismatrix(ones([2,2,1])
true

ismatrix(ones([1,2,2])
false

196 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
isrow, iscolumn, isscalar, isnumeric, isscalar, size, ndims,
length

isnan

Test for Not a Number.

Syntax
b = isnan(x)

Description
isnan(x) is true if the input argument is nan (not a number), and
false otherwise. The result is performed on each element of the input
argument, and the result has the same size.

Example
isnan([0,1,nan,inf])
F F T F

See also
isinf, nan

isnumeric

Test for a numeric object.

Syntax
b = isnumeric(x)

Description
isnumeric(x) is true if the input argument is numeric (real or complex
scalar, vector, or array), and false otherwise.

Examples
isnumeric(pi)
true

isnumeric(’abc’)
false

See also
ischar, isfloat, isinteger, isscalar

LME Reference — mathematical functions 197

isprime

Prime number test.

Syntax
b = isprime(n)

Description
isprime(n) returns true if n is a prime number, or false otherwise.
If n is a matrix, the test is applied to each element and the result is a
matrix the same size.

Examples
isprime(7)
true

isprime([0, 2, 10])
F T F

See also
factor

isrow

Test for a row vector.

Syntax
b = isrow(x)

Description
isrow(x) is true if the input argument is a row vector (real or complex
2-dimension array of any floating-point or integer type, character or
logical value with first dimension equal to 1, or empty array), and
false otherwise.

Examples
isrow([1, 2, 3])
true

isrow([1; 2])
false

isrow(7)
true

isrow([1, 2; 3, 4])
false

198 Sysquake Remote ©1999-2016, Calerga Sàrl

See also

iscolumn, ismatrix, isscalar, isnumeric, size, ndims, length

isscalar

Test for a scalar number.

Syntax
b = isscalar(x)

Description

isscalar(x) is true if the input argument is scalar (real or complex
number of any floating-point or integer type, character or logical
value), and false otherwise.

Examples
isscalar(2)
true

isscalar([1, 2, 5])
false

See also

isnumeric, isvector, ismatrix, size

isvector

Test for a vector.

Syntax
b = isvector(x)

Description

isvector(x) is true if the input argument is a row or column vec-
tor (real or complex 2-dimension array of any floating-point or inte-
ger type, character or logical value with one dimension equal to 1, or
empty array), and false otherwise.

LME Reference — mathematical functions 199

Examples
isvector([1, 2, 3])
true

isvector([1; 2])
true

isvector(7)
true

isvector([1, 2; 3, 4])
false

See also
isnumeric, isscalar, iscolumn, isrow, size, ndims, length

lcm

Least common multiple.

Syntax
q = lcm(a, b)

Description
lcm(a,b) gives the least common multiple of integer numbers a and
b.

Example
lcm(72, 56)
504

See also
gcd

log

Natural (base e) logarithm.

Syntax
y = log(x)

Description
log(x) gives the natural logarithm of x. It is the inverse of exp. The
result is complex if x is not real positive.

200 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
log([-1,0,1,10,1+2j])
0+3.1416j inf 0 2.3026 0.8047+1.1071j

See also
log10, log2, log1p, reallog, exp

log10

Decimal logarithm.

Syntax
y = log10(x)

Description
log10(x) gives the decimal logarithm of x, defined by log10(x) =
log(x)/log(10). The result is complex if x is not real positive.

Example
log10([-1,0,1,10,1+2j])
0+1.3644j inf 0 1 0.3495+0.4808j

See also
log, log2

log1p

Logarithm of x plus one.

Syntax
y = log1p(x)

Description
log1p(x) is log(1+x) with improved precision for small x.

Example
log1p(1e-15)
1e-15

log(1 + 1e-15)
1.1102e-15

LME Reference — mathematical functions 201

See also
log, expm1

log2

Base 2 logarithm.

Syntax
y = log2(x)

Description
log2(x) gives the base 2 logarithm of x, defined as
log2(x)=log(x)/log(2). The result is complex if x is not real
positive.

Example
log2([1, 2, 1024, 2000, -5])
0 1 10 10.9658 2.3219+4.5324j

See also
log, log10

mod

Modulo.

Syntax
m = mod(x, y)

Description
mod(x,y) gives the modulo of x divided by y, i.e. a number m between
0 and y such that x = q*y+m with integer q. Imaginary parts, if they
exist, are ignored.

Examples
mod(10,7)
3

mod(-10,7)
4

mod(10,-7)
-4

mod(-10,-7)
-3

202 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
rem

nan

Not a Number.

Syntax
x = nan
x = NaN
x = nan(n)
x = nan(n1,n2,...)
x = nan([n1,n2,...])
x = nan(..., type)

Description
NaN (Not a Number) is the result of the primitive floating-point func-
tions or operators called with invalid arguments. For example, 0/0,
inf-inf and 0*inf all result in NaN. When used in an expression, NaN
propagates to the result. All comparisons involving NaN result in false,
except for comparing NaN with any number for inequality, which re-
sults in true.

Contrary to built-in functions usually found in the underlying oper-
ating system, many functions which would result in NaNs give complex
numbers when called with arguments in a certain range.

With integer non-negative arguments, nan creates arrays whose
elements are NaN. Arguments are interpreted the same way as zeros
and ones.

The last argument of nan can be a string to specify the type of
the result: ’double’ for double-precision (default), or ’single’ for
single-precision.

Examples
nan
nan

0*nan
nan

nan==nan
false

nañ =nan
true

log(-1)
0+3.1416j

LME Reference — mathematical functions 203

See also
inf, isnan, zeros, ones

nchoosek

Binomial coefficient.

Syntax
b = nchoosek(n, k)

Description
nchoosek(n,k) gives the number of combinations of n objects taken
k at a time. Both n and k must be nonnegative integers with k<n.

Examples
nchoosek(10,4)
210

nchoosek(10,6)
210

See also
factorial, gamma

nthroot

Real nth root.

Syntax
y = nthroot(x,n)

Description
nthroot(x,n) gives the real nth root of real number x. If x is positive,
it is x.̂ (1./n); if x is negative, it is -abs(x).̂ (1./n) if n is an odd
integer, or NaN otherwise.

Example
nthroot([-2,2], 3)
-1.2599 1.2599

[-2,2] .̂ (1/3)
0.6300+1.0911i 1.2599

204 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
operator .̂ , realsqrt, sqrt

pdf

Probability density function.

Syntax
y = pdf(distribution,x)
y = pdf(distribution,x,a1)
y = pdf(distribution,x,a1,a2)

Description
pdf(distribution,x) gives the probability of a density function. The
distribution is specified with the first argument, a string; case is ig-
nored (’t’ and ’T’ are equivalent). Additional arguments must be pro-
vided for some distributions. See cdf for the list of distributions.

See also
cdf, random

pi

Constant π.

Syntax
x = pi

Description
pi is the number π, up to the precision of its floating-point represen-
tation.

Example
exp(1j * pi)
-1

See also
goldenratio, i, j, eps

pol2cart

Polar to Cartesian coordinates transform.

LME Reference — mathematical functions 205

Syntax
(x, y) = pol2cart(phi, r)
(x, y, z) = pol2cart(phi, r, z)

Description
(x,y)=pol2cart(phi,r) transforms polar coordinates phi and r to
Cartesian coordinates x and y such that = r cos(φ) and = r sin(φ).

(x,y,z)=pol2cart(phi,r,z) transforms cylindrical coordinates to
Cartesian coordinates, leaving z unchanged.

Example
(x, y) = pol2cart(1, 2)
x =
1.0806

y =
1.6829

See also
cart2pol, cart2sph, sph2cart

random

Random generator for distribution function.

Syntax
x = random(distribution)
x = random(distribution, a1)
x = random(distribution, a1, a2)
x = random(..., size)

Description
random(distribution,a1,a2) calculates a pseudo-random number
whose distribution function is specified by name distribution and
parameters a1 and a2 (some distributions have a single parameter).
The distributions are given in the table below. Unlike in functions pdf,
cdf and icdf, parameters do not have default values and must be
specified.

Additional input arguments specify the size of the result, either as
a vector (or a single scalar for a square matrix) or as scalar values.
The result is an array of the specified size where each value is an
independent pseudo-random variable. The default size is 1 (scalar).

If the parameters are arrays, the result is an array of the same size
and each element is an independent pseudo-random variable whose

206 Sysquake Remote ©1999-2016, Calerga Sàrl

distribution has its parameters at the corresponding position. The size,
if specified, must be the same.

Distribution Name Parameters
beta beta a and b
Cauchy cauchy a and b
χ chi deg. of freedom ν
χ2 chi2 deg. of freedom ν
γ gamma shape α and λ
exponential exp mean
F f deg. of freedom ν1 and ν2
half-normal half-normal ϑ
Laplace laplace mean and scale
lognormal logn mean and st. dev.
Nakagami nakagami μ and ω
normal norm mean and st. dev.
Rayleigh rayl b
Student’s T t deg. of freedom ν
uniform unif limits of the range
Weibull weib shape a and scale b

Example
Array of 5 pseudo-random numbers whose distribution is χ2 with 3
degrees of freedom:

random(’chi2’, 3, [1, 5])
1.6442 0.4164 2.0272 2.7962 4.5896

See also
pdf, cdf, icdf, rand, randn, rng

rat

Rational approximation.

Syntax
(num, den) = rat(x)
(num, den) = rat(x, tol)
(num, den) = rat(x, tol=tol)

Description
rat(x,tol) returns the numerator and the denominator of a rational
approximation of real number x with the smallest integer numerator

LME Reference — mathematical functions 207

and denominator which fulfil absolute tolerance tol. If the input ar-
gument x is an array, output arguments are arrays of the same size.
Negative numbers give a negative numerator. The tolerance can be
passed as a named argument.

With one input argument, rat(x) uses tolerance
tol=1e-6*norm(x,1). With one output argument, rat(x) gives the
rational approximation itself as a floating-point number.

With command format rat, all numeric results as displayed as
rational aproximations with the default tolerance, including complex
numbers.

Example
(num,den) = rat(pi)
num =
355

den =
113

num/den
3.141592920353982

See also
format

real

Real part of a complex number.

Syntax
re = real(z)

Description
real(z) is the real part of the complex number z, or z if z is real.

Examples
real(1+2j)
1

real(1)
1

See also
imag, complex

208 Sysquake Remote ©1999-2016, Calerga Sàrl

reallog

Real natural (base e) logarithm.

Syntax
y = reallog(x)

Description
reallog(x) gives the real natural logarithm of x. It is the inverse of
exp for real numbers. The imaginary part of x is ignored. The result is
NaN if x is negative.

Example
reallog([-1,0,1,10,1+2j])
nan inf 0 2.3026 0

See also
log, realpow, realsqrt, exp

realmax realmin

Largest and smallest real numbers.

Syntax
x = realmax
x = realmax(n)
x = realmax(n1,n2,...)
x = realmax([n1,n2,...])
x = realmax(..., type)
x = realmin
x = realmin(...)

Description
realmax gives the largest positive real number in double precision.
realmin gives the smallest positive real number in double precision
which can be represented in normalized form (i.e. with full mantissa
precision).

With integer non-negative arguments, realmax and realmin create
arrays whose elements are all set to the respective value. Arguments
are interpreted the same way as zeros and ones.

The last argument of realmax and realmin can be a string to spec-
ify the type of the result: ’double’ for double-precision (default), or
’single’ for single-precision.

LME Reference — mathematical functions 209

Examples
realmin
2.2251e-308

realmin(’single’)
1.1755e-38

realmax
1.7977e308

realmax(’single’)
3.4028e38single

realmax + eps(realmax)
inf

See also
inf, ones, zeros, eps, flintmax

realpow

Real power.

Syntax
z = realpow(x, y)

Description
realpow(x,y) gives the real value of x to the power y. The imaginary
parts of x and y are ignored. The result is NaN if it is not defined for the
input arguments. If the arguments are arrays, their size must match
or one of them must be a scalar number; the power is performed
element-wise.

See also
operator .̂ , reallog, realsqrt

realsqrt

Real square root.

Syntax
y = realsqrt(x)

Description
realsqrt(x) gives the real square root of x. The imaginary part of x
is ignored. The result is NaN if x is negative.

210 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
realsqrt([-1,0,1,10,1+2j])
nan 0 1 3.1623 1

See also
sqrt, reallog, realpow, nthroot

rem

Remainder of a real division.

Syntax
r = rem(x, y)

Description
rem(x,y) gives the remainder of x divided by y, i.e. a number r be-
tween 0 and sign(x)*abs(y) such that x = q*y+r with integer q.
Imaginary parts, if they exist, are ignored.

Examples
rem(10,7)
3

rem(-10,7)
-3

rem(10,-7)
3

rem(-10,-7)
-3

See also
mod

round

Rounding to the nearest integer.

Syntax
y = round(x)

Description
round(x) gives the integer nearest to x. If the argument is a complex
number, the real and imaginary parts are handled separately.

LME Reference — mathematical functions 211

Examples
round(2.3)
2

round(2.6)
3

round(-2.3)
-2

See also
floor, ceil, fix, roundn

roundn

Rounding to a specified precision.

Syntax
y = roundn(x, n)

Description
roundn(x,n) rounds x to the nearest multiple of 10̂ n. If argument x
is a complex number, the real and imaginary parts are handled sepa-
rately. roundn(x,0) gives the same result as round(x).

Argument n must be a real integer. If x and/or n are arrays, round-
ing is performed separately on each element.

Examples
roundn(pi, -2)
3.1400

roundn(1000 * pi, 1)
3140

roundn(pi, [-3, -1])
3.1420 3.1000

See also
round, floor, ceil, fix

sign

Sign of a real number or direction of a complex number.

Syntax
s = sign(x)
z2 = sign(z1)

212 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
With a real argument, sign(x) is 1 if x>0, 0 if x==0, or -1 if x<0. With a
complex argument, sign(z1) is a complex value with the same phase
as z1 and whose magnitude is 1.

Examples
sign(-2)
-1

sign(1+1j)
0.7071+0.7071j

sign([0, 5])
0 1

See also
abs, angle

sec

Secant.

Syntax
y = sec(x)

Description
sec(x) gives the secant of x, which is complex if x is.

See also
asec, sech, cos

sech

Hyperbolic secant.

Syntax
y = sech(x)

Description
acot(x) gives the hyperbolic secant of x, which is complex if x is.

See also
asech, sec, cosh

LME Reference — mathematical functions 213

sin

Sine.

Syntax
y = sin(x)

Description
sin(x) gives the sine of x, which is complex if x is complex.

Example
sin(2)
0.9093

See also
cos, asin, sinh

sinc

Sinc.

Syntax
y = sinc(x)

Description
sinc(x) gives the sinc of x, i.e. sin(pi*x)/(pi*x) if x̃ =0 or 1 if x==0.
The result is complex if x is complex.

Example
sinc(1.5)
-0.2122

See also
sin, sinh

single

Conversion to single-precision numbers.

Syntax
B = single(A)

214 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
single(A) converts number or array A to single precision. A can be
any kind of numeric value (real, complex, or integer), or a character
or logical array.

Single literal numbers can be entered as a floating-point number
with the single suffix.

Examples
single(pi)
3.1416single

single(’AB’)
1x2 single array
65 66

3.7e4single
37000single

See also
double, uint8 and related functions, operator +, setstr, char,
logical

sinh

Hyperbolic sine.

Syntax
y = sinh(x)

Description
sinh(x) gives the hyperbolic sine of x, which is complex if x is com-
plex.

Example
sinh(2)
3.6269

See also
cosh, asinh, sin

sph2cart

Spherical to Cartesian coordinates transform.

LME Reference — mathematical functions 215

Syntax
(x, y, z) = sph2cart(phi, theta, r)

Description
(x,y,z)=sph2cart(phi,theta,r) transforms polar coordinates
phi, theta, and r to Cartesian coordinates x, y, and z such that
 = r cos(φ) cos(ϑ), y = r sin(φ) cos(ϑ), and z = r sin(ϑ).

Example
(x, y, z) = sph2cart(1, 2, 3)

x =
-0.6745

y =
-1.0505

z =
2.7279

See also
cart2pol, cart2sph, pol2cart

sqrt

Square root.

Syntax
r = sqrt(z)

Description
sqrt(z) gives the square root of z, which is complex if z is not real
positive.

Examples
sqrt(4)
2

sqrt([1 4 -9 3+4j])
1 2 3j 2+1j

See also
realsqrt, sqrtm, chol

swapbytes

Conversion between big-endian and little-endian representation.

216 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
Y = swapbytes(X)

Description
swapbytes(X) swaps the bytes representing number X. If X is an array,
each number is swapped separately. The imaginary part, if any, is
discarded. X can be of any numeric type. swapbytes is its own inverse
for real numbers.

Example
swapbytes(1uint32)
16777216uint32

See also
typecast, cast

tan

Tangent.

Syntax
y = tan(x)

Description
tan(x) gives the tangent of x, which is complex if x is complex.

Example
tan(2)
-2.185

See also
atan, tanh

tanh

Hyperbolic tangent.

Syntax
y = tanh(x)

LME Reference — linear algebra 217

Description
tanh(x) gives the hyperbolic tangent of x, which is complex if x is
complex.

Example
tanh(2)
0.964

See also
atanh, tan

typecast

Type conversion with same binary representation.

Syntax
Y = typecast(X, type)

Description
typecast(X,type) changes the numeric array X to the type given by
string type, which can be ’double’, ’single’, ’int8’ or any other
signed or unsigned integer type, ’char’, or ’logical’. The binary
representation in memory is preserved. The imaginary part, if any, is
discarded. Depending on the conversion, the number of elements is
changed, so that the array size in bytes in preserved. The result is a
row vector if X is a scalar or a row vector, or a column vector otherwise.
The result depends on the computer architecture.

Example
typecast(1uint32, ’uint8’)

1x4 uint8 array
0 0 0 1

typecast(pi, ’uint8’)
1x8 uint8 array
64 9 33 251 84 68 45 24

See also
swapbytes, bwrite, sread, cast

5.17 Linear Algebra

addpol

Addition of two polynomials.

218 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
p = addpol(p1,p2)

Description
addpol(p1,p2) adds two polynomials p1 and p2. Each polynomial is
given as a vector of coefficients, with the highest power first; e.g.,
2 + 2 − 3 is represented by [1,2,-3]. Row vectors and column
vectors are accepted, as well as matrices made of row vectors or col-
umn vectors, provided one matrix is not larger in one dimension and
smaller in the other one. addpol is equivalent to the plain addition
when both arguments have the same size.

Examples
addpol([1,2,3], [2,5])
1 4 8

addpol([1,2,3], -[2,5]) % subtraction
1 0 -2

addpol([1,2,3;4,5,6], [1;1])
1 2 4
4 5 7

See also
conv, deconv, operator +

balance

Diagonal similarity transform for balancing a matrix.

Syntax
B = balance(A)
(T, B) = balance(A)

Description
balance(A) applies a diagonal similarity transform to the square ma-
trix A to make the rows and columns as close in norm as possible.
Balancing may reduce the 1-norm of the matrix, and improves the
accuracy of the computed eigenvalues and/or eigenvectors. To avoid
round-off errors, balance scales A with powers of 2.

balance returns the balanced matrix B which has the same eigen-
values and singular values as A, and optionally the diagonal scaling
matrix T such that T\A*T=B.

LME Reference — linear algebra 219

Example
A = [1,2e6;3e-6,4];
(T,B) = balance(A)
T =
16384 0

0 3.125e-2
B =

1 3.8147
1.5729 4

See also
eig

care

Continuous-time algebraic Riccati equation.

Syntax
(X, L, K) = care(A, B, Q)
(X, L, K) = care(A, B, Q, R)
(X, L, K) = care(A, B, Q, R, S)
(X, L) = care(A, S, Q, true)

Description
care(A,B,Q) calculates the stable solution X of the following
continuous-time algebraic Riccati equation:

A′X + XA − XBB′X + Q = 0

All matrices are real; Q and X are symmetric.
With four input arguments, care(A,B,Q,R) (with R real symmetric)

solves the following Riccati equation:

A′X + XA − XBR−1B′X + Q = 0

With five input arguments, care(A,B,Q,R,S) solves the following
equation:

A′X + XA − (S + XB)R−1(S′ + B′X) + Q = 0

With two or three output arguments, (X,L,K) = care(...) also re-
turns the gain matrix K defined as

K = R−1B′X

and the column vector of closed-loop eigenvalues

L = eig(A − BK)

care(A,S,Q,true) with up to two output arguments is equivalent to
care(A,B,Q) or care(A,B,Q,false) with S=B*B’.

220 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
A = [-4,2;1,2];
B = [0;1];
C = [2,-1];
Q = C’ * C;
R = 5;
(X, L, K) = care(A, B, Q, R)
X =

1.07 3.5169
3.5169 23.2415

L =
-4.3488
-2.2995

K =
0.7034 4.6483

A’ * X + X * A - X * B / R * B’ * X + Q
1.7319e-14 1.1369e-13
8.5265e-14 6.2528e-13

See also
dare

chol

Cholesky decomposition.

Syntax
M2 = chol(M1)

Description
If a square matrix M1 is symmetric (or hermitian) and positive definite,
it can be decomposed into the following product:

M1 = M′2M2
where M2 is an upper triangular matrix. The Cholesky decomposi-

tion can be seen as a kind of square root.
The part of M1 below the main diagonal is not used, because M1

is assumed to be symmetric or hermitian. An error occurs if M1 is not
positive definite.

Example
M = chol([5,3;3,8])
M =
2.2361 1.3416
0 2.4900

M’*M
5 3
3 8

LME Reference — linear algebra 221

See also
inv, sqrtm

cond

Condition number of a matrix.

Syntax
x = cond(M)

Description
cond(M) returns the condition number of matrix M, i.e. the ratio of its
largest singular value divided by the smallest one, or infinity for singu-
lar matrices. The larger the condition number, the more ill-conditioned
the inversion of the matrix.

Examples
cond([1, 0; 0, 1])
1
cond([1, 1; 1, 1+1e-3])
4002.0008

See also
svd, rank

conv

Convolution or polynomial multiplication.

Syntax
v = conv(v1,v2)
M = conv(M1,M2)
M = conv(M1,M2,dim)
M = conv(...,kind)

Description
conv(v1,v2) convolves the vectors v1 and v2, giving a vector whose
length is length(v1)+length(v2)-1, or an empty vector if v1 or v2 is
empty. The result is a row vector if both arguments are row vectors,
and a column vector if both arguments are column vectors. Otherwise,
arguments are considered as matrices.

222 Sysquake Remote ©1999-2016, Calerga Sàrl

conv(M1,M2) convolves the matrices M1 and M2 column by columns.
conv(M1,M2,dim) convolves along the dimension dim, 1 for columns
and 2 for rows. If one of the matrices has only one column, or one row,
it is repeated to match the size of the other argument.

Let n1 and n2 be the number of elements in M1 and M2, respectively,
along the convolution dimension. By default, the result has n1+n2-1
elements along the convolution dimension. An additional string ar-
gument kind can specify a different number of elements in the re-
sult: with kind=’same’, the result has n1 elements (M has the same
size as M1, i.e. M1 is filtered by the finite impulse response filter M2).
With kind=’valid’, the result has n1-n2+1 elements, i.e. result ele-
ments impacted by boundaries are discarded. kind=’full’ produce
the same result as if kind is missing.

Examples
conv([1,2],[1,2,3])
1 4 7 6

conv([1,2],[1,2,3;4,5,6],2)
1 4 7 6
4 13 16 12

conv([1,2,5,8,3],[1,2,1],’full’)
1 4 10 20 24 14 3

conv([1,2,5,8,3],[1,2,1],’same’)
4 10 20 24 14

conv([1,2,5,8,3],[1,2,1],’valid’)
10 20 24

See also
deconv, filter, addpol, conv2

conv2

Two-dimensions convolution of matrices.

Syntax
M = conv2(M1,M2)
M = conv2(M1,M2,kind)

Description
conv2(M1,M2) convolves the matrices M1 and M2 along both
directions. The optional third argument specifies how to crop the
result. Let (nr1,nc1)=size(M1) and (nr2,nc2)=size(M2). With
kind=’full’ (default value), the result M has nr1+nr2-1 lines and
nc1+nc2-1 columns. With kind=’same’, the result M has nr1 lines

LME Reference — linear algebra 223

and nc1 columns; this options is very useful if M1 represents
equidistant samples in a plane (e.g. pixels) to be filtered with the
finite-impulse response 2-d filter M2. With kind=’valid’, the result M
has nr1-nr2+1 lines and nc1-nc2+1 columns, or is the empty matrix
[]; if M1 represents data filtered by M2, the borders where the
convolution sum is not totally included in M1 are removed.

Examples
conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1])
1 3 6 5 3
5 12 21 16 9

12 27 45 33 18
11 24 39 28 15
7 15 24 17 9

conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1],’same’)
12 21 16
27 45 33
24 39 28
conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1],’valid’)
45

See also
conv

cov

Covariance.

Syntax
M = cov(data)
M = cov(data, false)
M = cov(data, true)

Description
cov(data) returns the best unbiased estimate m-by-m covariance ma-
trix of the n-by-m matrix data for a normal distribution. Each row of
data is an observation where n quantities were measured. The co-
variance matrix is symmetric if data is real, and hermitian if data is
complex (i.e. M==M’). The diagonal is the variance of each column of
data.

cov(data,false) is the same as cov(data).
cov(data,true) returns the m-by-m covariance matrix of the n-by-

m matrix data which contains the whole population.

224 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
A = [1,2;2,4;3,5];
cov(A)
1 1.5
1.5 2.3333

The diagonal elements are the variance of the columns of A:

var(A)
1 2.3333

The covariance matrix can be computed as follows:

n = size(A, 1);
A1 = A - repmat(mean(A, 1), n, 1);
(A1’ * A1) / (n - 1)
1 1.5
1.5 2.3333

See also
mean, var

cross

Cross product.

Syntax
v3 = cross(v1, v2)
v3 = cross(v1, v2, dim)

Description
cross(v1,v2) gives the cross products of vectors v1 and v2. v1 and
v2 must be row or columns vectors of three components, or arrays of
the same size containing several such vectors. When there is ambi-
guity, a third argument dim may be used to specify the dimension of
vectors: 1 for column vectors, 2 for row vectors, and so on.

Examples
cross([1; 2; 3], [0; 0; 1])
2

-1
0

cross([1, 2, 3; 7, 1, -3], [4, 0, 0; 0, 2, 0], 2)
0 12 -8
6 0 14

LME Reference — linear algebra 225

See also
dot, operator *, det

cummax

Cumulative maximum.

Syntax
M2 = cummax(M1)
M2 = cummax(M1,dim)
M2 = cummax(...,dir)

Description
cummax(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the maximum of all the elements M1(k,j) with
k<=i. cummax(M1,dim) operates along the dimension dim (column-
wise if dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cummax processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

Examples
cummax([1,2,3;5,1,4;2,8,7])
1 2 3
5 2 4
5 8 7

cummax([1,2,3;5,1,4;2,8,7], 2)
1 2 3
5 5 5
2 8 8

See also
max, cummin, cumsum, cumprod

cummin

Cumulative minimum.

Syntax
M2 = cummin(M1)
M2 = cummin(M1,dim)
M2 = cummin(...,dir)

226 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
cummin(M1) returns a matrix M2 of the same size as M1, whose el-
ements M2(i,j) are the minimum of all the elements M1(k,j) with
k<=i. cummin(M1,dim) operates along the dimension dim (column-
wise if dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cummin processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

See also
min, cummax, cumsum, cumprod

cumprod

Cumulative products.

Syntax
M2 = cumprod(M1)
M2 = cumprod(M1,dim)
M2 = cumprod(...,dir)

Description
cumprod(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the product of all the elements M1(k,j) with k<=i.
cumprod(M1,dim) operates along the dimension dim (column-wise if
dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cumprod processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

Examples
cumprod([1,2,3;4,5,6])
1 2 3
4 10 18

cumprod([1,2,3;4,5,6],2)
1 2 6
4 20 120

See also
prod, cumsum, cummax, cummin

LME Reference — linear algebra 227

cumsum

Cumulative sums.

Syntax
M2 = cumsum(M1)
M2 = cumsum(M1,dim)
M2 = cumsum(...,dir)

Description
cumsum(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the sum of all the elements M1(k,j) with k<=i.
cumsum(M1,dim) operates along the dimension dim (column-wise if
dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cumsum processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

Examples
cumsum([1,2,3;4,5,6])
1 2 3
5 7 9

cumsum([1,2,3;4,5,6],2)
1 3 6
4 9 15

cumsum([1,2,3;4,5,6],2,’r’)
6 5 3
15 11 6

See also
sum, diff, cumprod, cummax, cummin

dare

Discrete-time algebraic Riccati equation.

Syntax
(X, L, K) = dare(A, B, Q)
(X, L, K) = dare(A, B, Q, R)

228 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
dare(A,B,Q) calculates the stable solution X of the following discrete-
time algebraic Riccati equation:

X = A′XA − A′XB(B′XB +)−1B′XA + Q

All matrices are real; Q and X are symmetric.
With four input arguments, dare(A,B,Q,R) (with R real symmetric)

solves the following Riccati equation:

X = A′XA − A′XB(B′XB + R)−1B′XA + Q

With two or three output arguments, (X,L,K) = dare(...) also re-
turns the gain matrix K defined as

K = (B′XB + R)−1B′XA

and the column vector of closed-loop eigenvalues

L = eig(A − BK)

Example
A = [-4,2;1,2];
B = [0;1];
C = [2,-1];
Q = C’ * C;
R = 5;
(X, L, K) = dare(A, B, Q, R)
X =
2327.9552 -1047.113

-1047.113 496.0624
L =

-0.2315
0.431

K =
9.3492 -2.1995

-X + A’*X*A - A’*X*B/(B’*X*B+R)*B’*X*A + Q
1.0332e-9 -4.6384e-10

-4.8931e-10 2.2101e-10

See also
care

deconv

Deconvolution or polynomial division.

LME Reference — linear algebra 229

Syntax
q = deconv(a,b)
(q,r) = deconv(a,b)

Description
(q,r)=deconv(a,b) divides the polynomial a by the polynomial b, re-
sulting in the quotient q and the remainder r. All polynomials are
given as vectors of coefficients, highest power first. The degree of
the remainder is strictly smaller than the degree of b. deconv is the
inverse of conv: a = addpol(conv(b,q),r).

Examples
[q,r] = deconv([1,2,3,4,5],[1,3,2])
q =
1 -1 4

r =
-6 -3

addpol(conv(q,[1,3,2]),r)
1 2 3 4 5

See also
conv, filter, addpol

det

Determinant of a square matrix.

Syntax
d = det(M)

Description
det(M) is the determinant of the square matrix M, which is 0 (up to
the rounding errors) if M is singular. The function rank is a numerically
more robust test for singularity.

Examples
det([1,2;3,4])
-2

det([1,2;1,2])
0

See also
poly, rank

230 Sysquake Remote ©1999-2016, Calerga Sàrl

diff

Differences.

Syntax
dm = diff(A)
dm = diff(A,n)
dm = diff(A,n,dim)
dm = diff(A,[],dim)

Description
diff(A) calculates the differences between each elements of the
columns of matrix A, or between each elements of A if it is a row
vector.

diff(A,n) calculates the n:th order differences, i.e. it repeats n
times the same operation. Up to a scalar factor, the result is an ap-
proximation of the n:th order derivative based on equidistant samples.

diff(A,n,dim) operates along dimension dim. If the second argu-
ment n is the empty matrix [], the default value of 1 is assumed.

Examples
diff([1,3,5,4,8])
2 2 -1 4

diff([1,3,5,4,8],2)
0 -3 5

diff([1,3,5;4,8,2;3,9,8],1,2)
2 2
4 -6
6 -1

See also
cumsum

dlyap

Discrete-time Lyapunov equation.

Syntax
X = dlyap(A, C)

Description
dlyap(A,C) calculates the solution X of the following discrete-time
Lyapunov equation:

AXA′ − X + C = 0

All matrices are real.

LME Reference — linear algebra 231

Example
A = [3,1,2;1,3,5;6,2,1];
C = [7,1,2;4,3,5;1,2,1];
X = dlyap(A, C)
X =
-1.0505 3.2222 -1.2117
3.2317 -11.213 4.8234

-1.4199 5.184 -2.7424

See also
lyap, dare

dot

Scalar product.

Syntax
v3 = dot(v1, v2)
v3 = dot(v1, v2, dim)

Description
dot(v1,v2) gives the scalar products of vectors v1 and v2. v1 and v2
must be row or columns vectors of same length, or arrays of the same
size; then the scalar product is performed along the first dimension not
equal to 1. A third argument dim may be used to specify the dimension
the scalar product is performed along.

With complex values, complex conjugate values of the first array
are multiplied with values of the second array.

Examples
dot([1; 2; 3], [0; 0; 1])
3

dot([1, 2, 3; 7, 1, -3], [4, 0, 0; 0, 2, 0], 2)
4
2

dot([1; 2i], [3i; 5])
0 - 7i

See also
cross, operator *, det

eig

Eigenvalues and eigenvectors of a matrix.

232 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
e = eig(M)
(V,D) = eig(M)

Description
eig(M) returns the vector of eigenvalues of the square matrix M.

(V,D) = eig(M) returns a diagonal matrix D of eigenvalues and a
matrix V whose columns are the corresponding eigenvectors. They are
such that M*V = V*D.

Examples
Eigenvalues as a vector:

eig([1,2;3,4])
-0.3723
5.3723

Eigenvectors, and eigenvalues as a diagonal matrix:

(V,D) = eig([1,2;2,1])
V =
0.7071 0.7071
-0.7071 0.7071

D =
-1 0
0 3

Checking that the result is correct:

[1,2;2,1] * V
-0.7071 2.1213
0.7071 2.1213

V * D
-0.7071 2.1213
0.7071 2.1213

See also
schur, svd, det, roots

expm

Exponential of a square matrix.

Syntax
M2 = expm(M1)

LME Reference — linear algebra 233

Description
expm(M) is the exponential of the square matrix M, which is usually
different from the element-wise exponential of M given by exp.

Examples
expm([1,1;1,1])
4.1945 3.1945
3.1945 4.1945

exp([1,1;1,1])
2.7183 2.7183
2.7183 2.7183

See also
logm, operator ,̂ exp

fft

Fast Fourier Transform.

Syntax
F = fft(f)
F = fft(f,n)
F = fft(f,n,dim)

Description
fft(f) returns the discrete Fourier transform (DFT) of the vector f, or
the DFT’s of each columns of the array f. With a second argument
n, the n first values are used; if n is larger than the length of the
data, zeros are added for padding. An optional argument dim gives
the dimension along which the DFT is performed; it is 1 for calculating
the DFT of the columns of f, 2 for its rows, and so on. fft(f,[],dim)
specifies the dimension without resizing the array.

fft is based on a mixed-radix Fast Fourier Transform if the data
length is non-prime. It can be very slow if the data length has large
prime factors or is a prime number.

The coefficients of the DFT are given from the zero frequency to
the largest frequency (one point less than the inverse of the sampling
period). If the input f is real, its DFT has symmetries, and the first half
contain all the relevant information.

Examples
fft(1:4)
10 -2+2j -2 -2-2j

fft(1:4, 3)
6 -1.5+0.866j -1.5-0.866j

234 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
ifft

fft2

2-d Fast Fourier Transform.

Syntax
F = fft2(f)
F = fft2(f, size)
F = fft2(f, nr, nc)
F = fft2(f, n)

Description
fft2(f) returns the 2-d Discrete Fourier Transform (DFT along dimen-
sions 1 and 2) of array f.

With two or three input arguments, fft2 resizes the two first dimen-
sions by cropping or by padding with zeros. fft2(f,nr,nc) resizes
first dimension to nr rows and second dimension to nc columns. In
fft2(f,size), the new size is given as a two-element vector [nr,nc].
fft2(F,n) is equivalent to fft2(F,n,n).

If the first argument is an array with more than two dimensions,
fft2 performs the 2-d DFT along dimensions 1 and 2 separately for
each plane along remaining dimensions; fftn performs an DFT along
each dimension.

See also
ifft2, fft, fftn

fftn

n-dimension Fast Fourier Transform.

Syntax
F = fftn(f)
F = fftn(f, size)

Description
fftn(f) returns the n-dimension Discrete Fourier Transform of array f
(DFT along each dimension of f).

With two input arguments, fftn(f,size) resizes f by cropping or
by padding f with zeros.

LME Reference — linear algebra 235

See also

ifftn, fft, fft2

filter

Digital filtering of data.

Syntax
y = filter(b,a,u)
y = filter(b,a,u,x0)
y = filter(b,a,u,x0,dim)
(y, xf) = filter(...)

Description

filter(b,a,u) filters vector u with the digital filter whose coefficients
are given by polynomials b and a. The filtered data can also be an
array, filtered along the first non-singleton dimension or along the
dimension specified with a fifth input argument. The fourth argu-
ment, if provided and different than the empty matrix [], is a ma-
trix whose columns contain the initial state of the filter and have
max(length(a),length(b))-1 element. Each column correspond to
a signal along the dimension of filtering. The result y, which has the
same size as the input, can be computed with the following code if u
is a vector:

b = b / a(1);
a = a / a(1);
if length(a) > length(b)
b = [b, zeros(1, length(a)-length(b))];

else
a = [a, zeros(1, length(b)-length(a))];

end
n = length(x);
for i = 1:length(u)
y(i) = b(1) * u(i) + x(1);
for j = 1:n-1
x(j) = b(j + 1) * u(i) + x(j + 1) - a(j + 1) * y(i);

end
x(n) = b(n + 1) * u(i) - a(n + 1) * y(i);

end

The optional second output argument is set to the final state of the
filter.

236 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
filter([1,2], [1,2,3], ones(1,10))
1 1 -2 4 1 -11 22 -8 -47 121

u = [5,6,5,6,5,6,5];
p = 0.8;
filter(1-p, [1,-p], u, p*u(1))

% low-pass with matching initial state
5 5.2 5.16 5.328 5.2624 5.4099 5.3279

See also
conv, deconv, conv2

funm

Matrix function.

Syntax
Y = funm(X, fun)
(Y, err) = funm(X, fun)

Description
funm(X,fun) returns the matrix function of square matrix X specified
by function fun. fun takes a scalar input argument and gives a scalar
output. It is either specified by its name or given as an anonymous or
inline function or a function reference.

With a second output argument err, funm also returns an estimate
of the relative error.

Examples
funm([1,2;3,4], @sin)
-0.4656 -0.1484
-0.2226 -0.6882

X = [1,2;3,4];
funm(X, @(x) (1+x)/(2-x))

-0.25 -0.75
-1.125 -1.375

(eye(2)+X)/(2*eye(2)-X)
-0.25 -0.75

-1.125 -1.375

See also
expm, logm, sqrtm, schur

LME Reference — linear algebra 237

householder

Householder transform.

Syntax
(nu, beta) = householder(x)

Description
The householder transform is an orthogonal matrix transform which
sets all the elements of a column to zero, except the first one. It is the
elementary step used by QR decomposition.

The matrix transform can be written as a product by an orthog-
onal square matrix P=I-beta*nu*nu’, where I is the identity ma-
trix, beta is a scalar, and nu is a column vector where nu(1) is 1.
householder(x), where x is a real or complex non-empty column vec-
tor, gives nu and beta such that P*x=[y;Z], where y is a scalar and Z
a zero column vector.

Example
x = [2; 5; 10];
(nu, beta) = householder(x)
nu =
1.0000

0.3743
0.7486
beta =
1.1761

P = eye(3) - beta * nu * nu’
P =
-0.1761 -0.4402 -0.8805
-0.4402 0.8352 -0.3296
-0.8805 -0.3296 0.3409

P * x
ans =
-11.3578
0.0000
0.0000

It is more efficient to avoid calculating P explicitly. Multiplication by P,
either as P*A (to set elements to zero) or B*P’ (to accumulate
transforms), can be performed by passing nu and beta to
householderapply:

householderapply(x, nu, beta)
ans =
-11.3578
0.0000
0.0000

238 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
householderapply, qr

householderapply

Apply Householder transform.

Syntax
B = householderapply(A, nu, beta)
B = householderapply(A, nu, beta, ’r’)

Description
householderapply(A,nu,beta) apply the Householder transform
defined by column vector nu (where nu(1) is 1) and real scalar
beta, as obtained by householder, to matrix A; i.e. it computes
A-nu*beta*nu’*A.

householderapply(A,nu,beta,’r’) apply the inverse
Householder transform to matrix A; i.e. it computes
A-A*nu*beta*nu’.

See also
householder

ifft

Inverse Fast Fourier Transform.

Syntax
f = ifft(F)
f = ifft(F, n)
f = ifft(F, n, dim)

Description
ifft returns the inverse Discrete Fourier Transform (inverse DFT). Up
to the sign and a scaling factor, the inverse DFT and the DFT are the
same operation: for a vector, ifft(d) = conj(fft(d))/length(d).
ifft has the same syntax as fft.

Examples
F = fft([1,2,3,4])
F =
10 -2+2j -2 -2-2j

ifft(F)
1 2 3 4

LME Reference — linear algebra 239

See also

fft, ifft2, ifftn

ifft2

Inverse 2-d Fast Fourier Transform.

Syntax
f = ifft2(F)
f = ifft2(F, size)
f = ifft2(F, nr, nc)
f = ifft2(F, n)

Description

ifft2 returns the inverse 2-d Discrete Fourier Transform (inverse DFT
along dimensions 1 and 2).

With two or three input arguments, ifft2 resizes the two first di-
mensions by cropping or by padding with zeros. ifft2(F,nr,nc) re-
sizes first dimension to nr rows and second dimension to nc columns.
In ifft2(F,size), the new size is given as a two-element vector
[nr,nc]. ifft2(F,n) is equivalent to ifft2(F,n,n).

If the first argument is an array with more than two dimensions,
ifft2 performs the inverse 2-d DFT along dimensions 1 and 2 sepa-
rately for each plane along remaining dimensions; ifftn performs an
inverse DFT along each dimension.

Up to the sign and a scaling factor, the inverse 2-d DFT and the 2-d
DFT are the same operation. ifft2 has the same syntax as fft2.

See also

fft2, ifft, ifftn

ifftn

Inverse n-dimension Fast Fourier Transform.

Syntax
f = ifftn(F)
f = ifftn(F, size)

240 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
ifftn(F) returns the inverse n-dimension Discrete Fourier Transform
of array F (inverse DFT along each dimension of F).

With two input arguments, ifftn(F,size) resizes F by cropping or
by padding F with zeros.

Up to the sign and a scaling factor, the inverse n-dimension DFT
and the n-dimension DFT are the same operation. ifftn has the same
syntax as fftn.

See also
fftn, ifft, ifft2

hess

Hessenberg reduction.

Syntax
(P,H) = hess(A)
H = hess(A)

Description
hess(A) reduces the square matrix A A to the upper Hessenberg form
H using an orthogonal similarity transformation P*H*P’=A. The result
H is zero below the first subdiagonal and has the same eigenvalues as
A.

Example
(P,H)=hess([1,2,3;4,5,6;7,8,9])
P =
1 0 0
0 -0.4961 -0.8682
0 -0.8682 0.4961

H =
1 -3.597 -0.2481
-8.0623 14.0462 2.8308
0 0.8308 -4.6154e-2

P*H*P’
ans =
1 2 3
4 5 6
7 8 9

See also
lu, qr, schur

LME Reference — linear algebra 241

inv

Inverse of a square matrix.

Syntax
M2 = inv(M1)

Description
inv(M1) returns the inverse M2 of the square matrix M1, i.e. a matrix of
the same size such that M2*M1 = M1*M2 = eye(size(M1)). M1 must
not be singular; otherwise, its elements are infinite.

To solve a set of linear of equations, the operator \ is more efficient.

Example
inv([1,2;3,4])
-2 1
1.5 -0.5

See also
operator /, operator \, pinv, lu, rank, eye

kron

Kronecker product.

Syntax
M = kron(A, B)

Description
kron(A,B) returns the Kronecker product of matrices A (size m1 by
n1) and B (size m2 by n2), i.e. an m1*m2-by-n1*n2 matrix made of
m1 by n1 submatrices which are the products of each element of A
with B.

Example
kron([1,2;3,4],ones(2))
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

See also
repmat

242 Sysquake Remote ©1999-2016, Calerga Sàrl

kurtosis

Kurtosis of a set of values.

Syntax
k = kurtosis(A)
k = kurtosis(A, dim)

Description
kurtosis(A) gives the kurtosis of the columns of array A or of the
row vector A. The dimension along which kurtosis proceeds may be
specified with a second argument.

The kurtosis measures how much values are far away from the
mean. It is 3 for a normal distribution, and positive for a distribution
which has more values far away from the mean.

Example
kurtosis(rand(1, 10000))
1.8055

See also
mean, var, skewness, moment

linprog

Linear programming.

Syntax
x = linprog(c, A, b)
x = linprog(c, A, b, xlb, xub)

Description
linprog(c,A,b) solves the following linear programming problem:

min c
s.t. A ≤ b

The optimum x is either finite, infinite if there is no bounded solution,
or not a number if there is no feasible solution.

Additional arguments may be used to constrain x between lower
and upper bounds. linprog(c,A,b,xlb,xub) solves the following lin-
ear programming problem:

LME Reference — linear algebra 243

min c
s.t. A ≤ b

 ≥ lb
 ≤ b

If xub is missing, there is no upper bound. xlb and xub may have less
elements than x, or contain -inf or +inf; corresponding elements
have no lower and/or upper bounds.

Examples
Maximize 3 + 2y subject to + y ≤ 9, 3 + y ≤ 18, ≤ 7, and y ≤ 6:

c = [-3,-2];
A = [1,1; 3,1; 1,0; 0,1];
b = [9; 18; 7; 6];
x = linprog(c, A, b)
x =
4.5
4.5

A more efficient way to solve the problem, with bounds on variables:

c = [-3,-2];
A = [1,1; 3,1];
b = [9; 18];
xlb = [];
xub = [7; 6];
x = linprog(c, A, b, xlb, xub)
x =
4.5
4.5

Check that the solution is feasible and bounded:

all(isfinite(x))
true

logm

Matrix logarithm.

Syntax
Y = logm(X)
(Y, err) = logm(X)

244 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
logm(X) returns the matrix logarithm of X, the inverse of the matrix
exponential. X must be square. The matrix logarithm does not always
exist.

With a second output argument err, logm also returns an estimate
of the relative error norm(expm(logm(X))-X)/norm(X).

Example
Y = logm([1,2;3,4])
Y =
-0.3504 + 2.3911j 0.9294 - 1.0938j
1.394 - 1.6406j 1.0436 + 0.7505j

expm(Y)
1 - 5.5511e-16j 2 -7.7716e-16j
3 - 8.3267e-16j 4

See also
expm, sqrtm, funm, schur, log

lu

LU decomposition.

Syntax
(L, U, P) = lu(A)
(L2, U) = lu(A)
Y = lu(A)

Description
With three output arguments, lu(A) computes the LU decomposition
of matrix A with partial pivoting, i.e. a lower triangular matrix L, an up-
per triangular matrix U, and a permutation matrix P such that P*A=L*U.
If A in an m-by-n mytrix, L is m-by-min(m,n), U is min(m,n)-by-n and P
is m-by-m. A can be rank-deficient.

With two output arguments, lu(A) permutes the lower triangular
matrix and gives L2=P’*L, such that A=L2*U.

With a single output argument, lu gives Y=L+U-eye(n).

Example
X = [1,2,3;4,5,6;7,8,8];
(L,U,P) = lu(X)
L =
1 0 0
0.143 1 0

LME Reference — linear algebra 245

0.571 0.5 1
U =
7 8 8
0 0.857 1.857
0 0 0.5
P =
0 0 1
1 0 0
0 1 0
P*X-L*U
ans =
0 0 0
0 0 0
0 0 0

See also
inv, qr, svd

lyap

Continuous-time Lyapunov equation.

Syntax
X = lyap(A, B, C)
X = lyap(A, C)

Description
lyap(A,B,C) calculates the solution X of the following continuous-time
Lyapunov equation:

AX + XB + C = 0

All matrices are real.
With two input arguments, lyap(A,C) solves the following Lya-

punov equation:

AX + XA′ + C = 0

Example
A = [3,1,2;1,3,5;6,2,1];
B = [2,7;8,3];
C = [2,1;4,5;8,9];
X = lyap(A, B, C)
X =
0.1635 -0.1244

-0.2628 0.1311
-0.7797 -0.7645

246 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
dlyap, care

max

Maximum value of a vector or of two arguments.

Syntax
x = max(v)
(v,ind) = max(v)
v = max(M,[],dim)
(v,ind) = max(M,[],dim)
M3 = max(M1,M2)

Description
max(v) returns the largest number of vector v. NaN’s are ignored. The
optional second output argument is the index of the maximum in v; if
several elements have the same maximum value, only the first one is
obtained. The argument type can be double, single, or integer of any
size.

max(M) operates on the columns of the matrix M and returns a row
vector. max(M,[],dim) operates along dimension dim (1 for columns,
2 for rows).

max(M1,M2) returns a matrix whose elements are the maximum
between the corresponding elements of the matrices M1 and M2. M1
and M2 must have the same size, or be a scalar which can be compared
against any matrix.

Examples
(mx,ix) = max([1,3,2,5,8,7])
mx =
8

ix =
5

max([1,3;5,nan], [], 2)
3
5

max([1,3;5,nan], 2)
2 3
5 2

See also
min

LME Reference — linear algebra 247

mean

Arithmetic mean of a vector.

Syntax
x = mean(v)
v = mean(M)
v = mean(M,dim)

Description

mean(v) returns the arithmetic mean of the elements of vector v.
mean(M) returns a row vector whose elements are the means of the
corresponding columns of matrix M. mean(M,dim) returns the mean of
matrix M along dimension dim; the result is a row vector if dim is 1, or
a column vector if dim is 2.

Examples
mean(1:5)
7.5

mean((1:5)’)
7.5

mean([1,2,3;5,6,7])
3 4 5

mean([1,2,3;5,6,7],1)
3 4 5

mean([1,2,3;5,6,7],2)
2
6

See also

cov, std, var, median, sum, prod

median

Median.

Syntax
x = median(v)
v = median(M)
v = median(M, dim)

248 Sysquake Remote ©1999-2016, Calerga Sàrl

Description

median(v) gives the median of vector v, i.e. the value x such that half
of the elements of v are smaller and half of the elements are larger.
The result is NaN if any value is NaN.

median(M) gives a row vector which contains the median of the
columns of M. With a second argument, median(M,dim) operates along
dimension dim.

Example
median([1, 2, 5, 6, inf])
5

See also

mean, sort

min

Minimum value of a vector or of two arguments.

Syntax
x = min(v)
(v,ind) = min(v)
v = min(M,[],dim)
(v,ind) = min(M,[],dim)
M3 = min(M1,M2)

Description

min(v) returns the largest number of vector v. NaN’s are ignored. The
optional second smallest argument is the index of the minimum in v;
if several elements have the same minimum value, only the first one
is obtained. The argument type can be double, single, or integer of
any size.

min(M) operates on the columns of the matrix M and returns a row
vector. min(M,[],dim) operates along dimension dim (1 for columns,
2 for rows).

min(M1,M2) returns a matrix whose elements are the minimum be-
tween the corresponding elements of the matrices M1 and M2. M1 and
M2 must have the same size, or be a scalar which can be compared
against any matrix.

LME Reference — linear algebra 249

Examples
(mx,ix) = min([1,3,2,5,8,7])
mx =
1

ix =
1

min([1,3;5,nan], [], 2)
1
5

min([1,3;5,nan], 2)
1 2
2 2

See also
max

moment

Central moment of a set of values.

Syntax
m = moment(A, order)
m = moment(A, order, dim)

Description
moment(A,order) gives the central moment (moment about the
mean) of the specified order of the columns of array A or of the row
vector A. The dimension along which moment proceeds may be
specified with a third argument.

Example
moment(randn(1, 10000), 3)
3.011

See also
mean, var, skewness, kurtosis

norm

Norm of a vector or matrix.

250 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
x = norm(v)
x = norm(v,kind)
x = norm(M)
x = norm(M,kind)

Description
With one argument, norm calculates the 2-norm of a vector or the
induced 2-norm of a matrix. The optional second argument specifies
the kind of norm.
Kind Vector Matrix
none or 2 sqrt(sum(abs(v).̂ 2)) largest singular value

(induced 2-norm)
1 sum(abs(V)) largest column sum of abs
inf or ’inf’ max(abs(v)) largest row sum of abs
-inf min(abs(v)) invalid
p sum(abs(V).̂ p)̂ (1/p) invalid
’fro’ sqrt(sum(abs(v).̂ 2)) sqrt(sum(diag(M’*M)))

Examples
norm([3,4])
5

norm([2,5;9,3])
10.2194

norm([2,5;9,3],1)
11

See also
abs, hypot, svd

null

Null space.

Syntax
Z = null(A)
Z = null(A, tol=tol)

Description
null(A) returns a matrix Z whose columns are an orthonormal basis
for the null space of m-by-n matrix A. Z has n-rank(A) columns, which
are the last right singular values of A; that is, those corresponding to

LME Reference — linear algebra 251

the singular values below a small tolerance. This tolerance can be
specified with a named argument tol.

Without input argument, null gives the null value (the unique
value of the special null type, not related to linear algebra).

Example
null([1,2,3;1,2,4;1,2,5])
-0.8944
0.4472
8.0581e-17

See also
svd, orth, null (null value)

orth

Orthogonalization.

Syntax
Q = orth(A)
Q = orth(A, tol=tol)

Description
orth(A) returns a matrix Q whose columns are an orthonormal basis
for the range of those of matrix A. Q has rank(A) columns, which are
the first left singular vectors of A (that is, those corresponding to the
largest singular values).

Orthogonalization is based on the singular-value decomposition,
where only the singular values larger than some small threshold are
considered. This threshold can be specified with an optional named
argument.

Example
orth([1,2,3;1,2,4;1,2,5])
-0.4609 0.788
-0.5704 8.9369e-2
-0.6798 -0.6092

See also
svd, null

pinv

Pseudo-inverse of a matrix.

252 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
M2 = pinv(M1)
M2 = pinv(M1, tol)
M2 = pinv(M1, tol=tol)

Description
pinv(M1) returns the pseudo-inverse of matrix M. For a nonsingular
square matrix, the pseudo-inverse is the same as the inverse. For an
arbitrary matrix (possibly nonsquare), the pseudo-inverse M2 has the
following properties: size(M2) = size(M1’), M1*M2*M1 = M1,
M2*M1*M2 = M2, and the norm of M2 is minimum. The pseudo-inverse
is based on the singular-value decomposition, where only the singular
values larger than some small threshold are considered. This
threshold can be specified with an optional second argument tol or
as a named argument.

If M1 is a full-rank matrix with more rows than columns, pinv returns
the least-square solution pinv(M1)*y = (M1’*M1)\M1’*y of the over-
determined system M1*x = y.

Examples
pinv([1,2;3,4])

-2 1
1.5 -0.5

M2 = pinv([1;2])
M2 =
0.2 0.4

[1;2] * M2 * [1;2]
1
2

M2 * [1;2] * M2
0.2 0.4

See also
inv, svd

poly

Characteristic polynomial of a square matrix or polynomial coefficients
based on its roots.

Syntax
pol = poly(M)
pol = poly(r)

LME Reference — linear algebra 253

Description
With a matrix argument, poly(M) returns the characteristic polyno-
mial det(x*eye(size(M))-M) of the square matrix M. The roots of the
characteristic polynomial are the eigenvalues of M.

With a vector argument, poly(r) returns the polynomial whose
roots are the elements of the vector r. The first coefficient of the
polynomial is 1. If the complex roots form conjugate pairs, the result
is real.

Examples
poly([1,2;3,4]
1 -5 -2

roots(poly([1,2;3,4]))
5.3723

-0.3723
eig([1,2;3,4])
-0.3723
5.3723

poly(1:3)
1 -6 11 -6

See also
roots, det

polyder

Derivative of a polynomial or a polynomial product or ratio.

Syntax
A1 = polyder(A)
C1 = polyder(A, B)
(N1, D1) = polyder(N, D)

Description
polyder(A) returns the polynomial which is the derivative of the poly-
nomial A. Both polynomials are given as vectors of coefficients, highest
power first. The result is a row vector.

With a single output argument, polyder(A,B) returns the
derivative of the product of polynomials A and B. It is equivalent to
polyder(conv(A,B)).

With two output arguments, (N1,D1)=polyder(N,D) returns the
derivative of the polynomial ratio N/D as N1/D1. Input and output ar-
guments are polynomial coefficients.

254 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
Derivative of 3 + 22 + 5 + 2:

polyder([1, 2, 5, 2])
3 4 5

Derivative of (3 + 22 + 5 + 2)/(2 + 3):

(N, D) = polyder([1, 2, 5, 2], [2, 3])
N =
4 13 12 11

D =
4 12 9

See also
polyint, polyval, poly, addpol, conv

polyint

Integral of a polynomial.

Syntax
pol2 = polyint(pol1)
pol2 = polyint(pol1, c)

Description
polyint(pol1) returns the polynomial which is the integral of the
polynomial pol1, whose zero-order coefficient is 0. Both polynomi-
als are given as vectors of coefficients, highest power first. The result
is a row vector. A second input argument can be used to specify the
integration constant.

Example
Y = polyint([1, 2, 3, 4, 5])
Y =
0.2 0.5 1 2 5 0

y = polyder(Y)
y =
1 2 3 4 5

Y = polyint([1, 2, 3, 4, 5], 10)
Y =
0.2 0.5 1 2 5 10

See also
polyder, polyval, poly, addpol, conv

LME Reference — linear algebra 255

polyval

Numeric value of a polynomial evaluated at some point.

Syntax
y = polyval(pol, x)

Description
polyval(pol,x) evaluates the polynomial pol at x, which can be a
scalar or a matrix of arbitrary size. The polynomial is given as a vector
of coefficients, highest power first. The result has the same size as x.

Examples
polyval([1,3,8], 2)
18

polyval([1,2], 1:5)
3 4 5 6 7

See also
polyder, polyint, poly, addpol, conv

prod

Product of the elements of a vector.

Syntax
x = prod(v)
v = prod(M)
v = prod(M,dim)

Description
prod(v) returns the product of the elements of vector v. prod(M)
returns a row vector whose elements are the products of the corre-
sponding columns of matrix M. prod(M,dim) returns the product of
matrix M along dimension dim; the result is a row vector if dim is 1, or
a column vector if dim is 2.

Examples
prod(1:5)
120

prod((1:5)’)
120

prod([1,2,3;5,6,7])

256 Sysquake Remote ©1999-2016, Calerga Sàrl

5 12 21
prod([1,2,3;5,6,7],1)
5 12 21

prod([1,2,3;5,6,7],2)
6
210

See also
sum, mean, operator *

qr

QR decomposition.

Syntax
(Q, R, E) = qr(A)
(Q, R) = qr(A)
R = qr(A)
(Qe, Re, e) = qr(A, false)
(Qe, Re) = qr(A, false)
Re = qr(A, false)

Description
With three output arguments, qr(A) computes the QR decomposition
of matrix A with column pivoting, i.e. a square unitary matrix Q and
an upper triangular matrix R such that A*E=Q*R. With two output argu-
ments, qr(A) computes the QR decomposition without pivoting, such
that A=Q*R. With a single output argument, qr gives R.

With a second input argument with the value false, if A has m rows
and n columns with m>n, qr produces an m-by-n Q and an n-by-n R.
Bottom rows of zeros of R, and the corresponding columns of Q, are
discarded. With column pivoting, the third output argument e is a
permutation vector: A(:,e)=Q*R.

Example
(Q,R) = qr([1,2;3,4;5,6])
Q =

-0.169 0.8971 0.4082
-0.5071 0.276 -0.8165
-0.8452 -0.345 0.4082

R =
-5.9161 -7.4374

0 0.8281
0 0

(Q,R) = qr([1,2;3,4;5,6],false)

LME Reference — linear algebra 257

Q =
0.169 0.8971
0.5071 0.276
0.8452 -0.345

R =
5.9161 7.4374
0 0.8281

See also
lu, schur, hess, svd

rank

Rank of a matrix.

Syntax
x = rank(M)
x = rank(M, tol)
x = rank(M, tol=tol)

Description
rank(M) returns the rank of matrix M, i.e. the number of lines or
columns linearly independent. To obtain it, the singular values are
computed and the number of values significantly larger than 0 is
counted. The value below which they are considered to be 0 can be
specified with the optional second argument or named argument.

Examples
rank([1,1;0,0])
1
rank([1,1;0,1j])
2

See also
svd, cond, pinv, det

roots

Roots of a polynomial.

Syntax
r = roots(pol)
r = roots(M)
r = roots(M,dim)

258 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
roots(pol) calculates the roots of the polynomial pol. The polyno-
mial is given by the vector of its coefficients, highest power first, while
the result is a column vector.

With a matrix as argument, roots(M) calculates the roots of the
polynomials corresponding to each column of M. An optional second
argument is used to specify in which dimension roots operates (1 for
columns, 2 for rows). The roots of the i:th polynomial are in the i:th
column of the result, whatever the value of dim is.

Examples
roots([1, 0, -1])
1

-1
roots([1, 0, -1]’)
1

-1
roots([1, 1; 0, 5; -1, 6])
1 -2

-1 -3
roots([1, 0, -1]’, 2)
[]

See also
poly, eig

schur

Schur factorization.

Syntax
(U,T) = schur(A)
T = schur(A)
(U,T) = schur(A, ’c’)
T = schur(A, ’c’)

Description
schur(A) computes the Schur factorization of square matrix A, i.e. a
unitary matrix U and a square matrix T (the Schur matrix) such that
A=U*T*U’. If A is complex, the Schur matrix is upper triangular, and its
diagonal contains the eigenvalues of A; if A is real, the Schur matrix is
real upper triangular, except that there may be 2-by-2 blocks on the
main diagonal which correspond to the complex eigenvalues of A. To
force a complex Schur factorization with an upper triangular matrix T,
schur is given a second input argument ’c’ or ’complex’.

LME Reference — linear algebra 259

Examples

Schur factorization:

A = [1,2;3,4];
(U,T) = schur(A)
U =
-0.8246 -0.5658
0.5658 -0.8246

T =
-0.3723 -1

0 5.3723

Since T is upper triangular, its diagonal contains the eigenvalues of A:

eig(A)
ans =
-0.3723
5.3723

For a matrix with complex eigenvalues, the real Schur factorization
has 2x2 blocks on its diagonal:

T = schur([1,0,0;0,1,2;0,-3,1])
T =

1 0 0
0 1 2
0 -3 1

T = schur([1,0,0;0,1,2;0,-3,1],’c’)
T =

1 0 0
0 1 + 2.4495j 1
0 0 1 - 2.4495j

See also

lu, hess, qr, eig

skewness

Skewness of a set of values.

Syntax
s = skewness(A)
s = skewness(A, dim)

260 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
skewness(A) gives the skewness of the columns of array A or of the
row vector A. The dimension along which skewness proceeds may be
specified with a second argument.

The skewness measures how asymmetric a distribution is. It is 0
for a symmetric distribution, and positive for a distribution which has
more values much larger than the mean.

Example
skewness(randn(1, 10000).̂ 2)
2.6833

See also
mean, var, kurtosis, moment

sqrtm

Matrix square root.

Syntax
Y = sqrtm(X)
(Y, err) = sqrtm(X)

Description
sqrtm(X) returns the matrix square root of X, such that sqrtm(X)̂ 2=X.
X must be square. The matrix square root does not always exist.

With a second output argument err, sqrtm also returns an estimate
of the relative error norm(sqrtm(X)̂ 2-X)/norm(X).

Example
Y = sqrtm([1,2;3,4])
Y =
0.5537 + 0.4644j 0.807 - 0.2124j
1.2104 - 0.3186j 1.7641 + 0.1458j

Ŷ 2
1 2
3 4

See also
expm, logm, funm, schur, chol, sqrt

std

Standard deviation.

LME Reference — linear algebra 261

Syntax
x = std(v)
x = std(v, p)
v = std(M)
v = std(M, p)
v = std(M, p, dim)

Description
std(v) gives the standard deviation of vector v, normalized by
length(v)-1. With a second argument, std(v,p) normalizes by
length(v)-1 if p is false, or by length(v) if p is true.

std(M) gives a row vector which contains the standard deviation
of the columns of M. With a third argument, std(M,p,dim) operates
along dimension dim.

Example
std([1, 2, 5, 6, 10, 12])
4.3359

See also
mean, var, cov

sum

Sum of the elements of a vector.

Syntax
x = sum(v)
v = sum(M)
v = sum(M,dim)

Description
sum(v) returns the sum of the elements of vector v. sum(M) returns a
row vector whose elements are the sums of the corresponding
columns of matrix M. sum(M,dim) returns the sum of matrix M along
dimension dim; the result is a row vector if dim is 1, or a column
vector if dim is 2.

Examples
sum(1:5)
15

sum((1:5)’)
15

262 Sysquake Remote ©1999-2016, Calerga Sàrl

sum([1,2,3;5,6,7])
6 8 10

sum([1,2,3;5,6,7],1)
6 8 10

sum([1,2,3;5,6,7],2)
6
18

See also
prod, mean, operator +

svd

Singular value decomposition.

Syntax
s = svd(M)
(U,S,V) = svd(M)
(U,S,V) = svd(M,false)

Description
The singular value decomposition (U,S,V) = svd(M) decomposes the
m-by-n matrix M such that M = U*S*V’, where S is an m-by-n diagonal
matrix with decreasing positive diagonal elements (the singular values
of M), U is an m-by-m unitary matrix, and V is an n-by-n unitary matrix.
The number of non-zero diagonal elements of S (up to rounding errors)
gives the rank of M.

When M is rectangular, in expression U*S*V’, some columns of U or
V are multiplied by rows or columns of zeros in S, respectively. (U,S,V)
= svd(M,false) produces U, S and V where these columns or rows are
discarded (relationship M = U*S*V’ still holds):

Size of A Size of U Size of S Size of V
m by n, m <= n m by m m by m n by m
m by n, m > n m by n n by n n by n

svd(M,true) produces the same result as svd(M).
With one output argument, s = svd(M) returns the vector of sin-

gular values s=diag(S).
The singular values of M can also be computed with s =

sqrt(eig(M’*M)), but svd is faster and more robust.

Examples
(U,S,V)=svd([1,2;3,4])
U =

LME Reference — linear algebra 263

0.4046 0.9145
0.9145 -0.4046

S =
5.465 0
0 0.366

V =
0.576 -0.8174
0.8174 0.576

U*S*V’
1 2
3 4

svd([1,2;1,2])
3.1623
3.4697e-19

See also
eig, pinv, rank, cond, norm

trace

Trace of a matrix.

Syntax
tr = trace(M)

Description
trace(M) returns the trace of the matrix M, i.e. the sum of its diagonal
elements.

Example
trace([1,2;3,4])
5

See also
norm, diag

var

Variance of a set of values.

Syntax
s2 = var(A)
s2 = var(A, p)
s2 = var(A, p, dim)

264 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
var(A) gives the variance of the columns of array A or of the row
vector A. The variance is normalized with the number of observations
minus 1, or by the number of observations if a second argument is
true. The dimension along which var proceeds may be specified with
a third argument.

See also
mean, std, cov, kurtosis, skewness, moment

5.18 Array Functions

arrayfun

Function evaluation for each element of an array.

Syntax
(B1, ...) = arrayfun(fun, A1, ...)

Description
arrayfun(fun,A) evaluates function fun for each element of numeric
array A. Each evaluation must give a scalar result of numeric (or logical
or char) type; results are returned as a numeric array the same size
as A. First argument is a function reference, an inline function, or the
name of a function as a string.

With more than two input arguments, arrayfun calls function fun
as feval(fun,A1(i),A2(i),...). All array arguments must have the
same size, but their type can be different.

With two output arguments or more, arrayfun evaluates function
fun with the same number of output arguments and builds a separate
array for each output. Without output argument, arrayfun evaluates
fun without output argument.

arrayfun differs from cellfun: all input arguments of arrayfun
are arrays of any type (not necessarily cell arrays), and corresponding
elements are provided provided to fun. With map, input arguments as
well as output arguments are cell arrays.

Examples
arrayfun(@isempty, {1, ’’; {}, ones(5)})
F T
T F

map(@isempty, {1, ’’; {}, ones(5)})
2x2 cell array

LME Reference — arrays 265

(m, n) = arrayfun(@size, {1, ’’; {}, ones(2, 5)})
m =
1 0
0 2

n =
1 0
0 5

See also
cellfun, map, fevalx

cat

Array concatenation.

Syntax
cat(dim, A1, A2, ...)

Description
cat(dim,A1,A2,...) concatenates arrays A1, A2, etc. along dimen-
sion dim. Other dimensions must match. cat is a generalization of the
comma and the semicolon inside brackets.

Examples
cat(2, [1,2;3,4], [5,6;7,8])
1 2 5 6
3 4 7 8

cat(3, [1,2;3,4], [5,6;7,8])
2x2x2 array
(:,:,1) =
1 2
3 4

(:,:,2) =
5 6
7 8

See also
operator [], operator ;, operator ,

cell

Cell array of empty arrays.

266 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
C = cell(n)
C = cell(n1,n2,...)
C = cell([n1,n2,...])

Description
cell builds a cell array whose elements are empty arrays []. The
size of the cell array is specified by one integer for a square array, or
several integers (either as separate arguments or in a vector) for a
cell array of any size.

Example
cell(2, 3)
2x3 cell array

See also
zeros, operator {}, iscell

cellfun

Function evaluation for each cell of a cell array.

Syntax
A = cellfun(fun, C)
A = cellfun(fun, C, ...)
A = cellfun(fun, S)
A = cellfun(fun, S, ...)

Description
cellfun(fun,C) evaluates function fun for each cell of cell array C.
Each evaluation must give a scalar result of numeric, logical, or char-
acter type; results are returned as a non-cell array the same size as C.
First argument is a function reference, an inline function, or the name
of a function as a string.

With more than two input arguments, cellfun calls function fun
as feval(fun,C{i},other), where C{i} is each cell of C in turn, and
other stands for the remaining arguments of cellfun.

The second argument can be a structure array S instead of a cell
array. In that case, fun is called with S(i).

cellfun differs from map in two ways: the result is a non-cell array,
and remaining arguments of cellfun are provided directly to fun.

LME Reference — arrays 267

Examples
cellfun(@isempty, {1, ’’; {}, ones(5)})
F T
T F

map(@isempty, {1, ’’; {}, ones(5)})
2x2 cell array

cellfun(@size, {1, ’’; {}, ones(5)}, 2)
1 0
0 5

See also
map, arrayfun

diag

Creation of a diagonal matrix or extraction of the diagonal elements
of a matrix.

Syntax
M = diag(v)
M = diag(v,k)
v = diag(M)
v = diag(M,k)

Description
With a vector input argument, diag(v) creates a square diagonal ma-
trix whose main diagonal is given by v. With a second argument, the
diagonal is moved by that amount in the upper right direction for pos-
itive values, and in the lower left direction for negative values.

With a matrix input argument, the main diagonal is extracted and
returned as a column vector. A second argument can be used to spec-
ify another diagonal.

Examples
diag(1:3)
1 0 0
0 2 0
0 0 3

diag(1:3,1)
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

M = magic(3)
M =

268 Sysquake Remote ©1999-2016, Calerga Sàrl

8 1 6
3 5 7
4 9 2

diag(M)
8
5
2

diag(M,1)
1
7

See also
tril, triu, eye, trace

eye

Identity matrix.

Syntax
M = eye(n)
M = eye(m,n)
M = eye([m,n])
M = eye(..., type)

Description
eye builds a matrix whose diagonal elements are 1 and other elements
0. The size of the matrix is specified by one integer for a square ma-
trix, or two integers (either as two arguments or in a vector of two
elements) for a rectangular matrix.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Examples
eye(3)
1 0 0
0 1 0
0 0 1

eye(2, 3)
1 0 0
0 1 0

eye(2, ’int8’)
2x2 int8 array
1 0
0 1

LME Reference — arrays 269

See also

ones, zeros, diag

fevalx

Function evaluation with array expansion.

Syntax
(Y1,...) = fevalx(fun,X1,...)

Description

(Y1,Y2,...)=fevalx(fun,X1,X2,...) evaluates function fun with
input arguments X1, X2, etc. Arguments must be arrays, which are ex-
panded if necessary along singleton dimensions so that all dimensions
match. For instance, three arguments of size 3x1x2, 1x5 and 1x1 are
replicated into arrays of size 3x5x2. Output arguments are assigned
to Y1, Y2, etc. Function fun is specified either by its name as a string,
by a function reference, or by an inline or anonymous function.

Example
fevalx(@plus, 1:5, (10:10:30)’)

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

See also

feval, meshgrid, repmat, inline, operator @

find

Find the indices of the non-null elements of an array.

Syntax
ix = find(v)
[s1,s2] = find(M)
[s1,s2,x] = find(M)
... = find(..., n)
... = find(..., n, dir)

270 Sysquake Remote ©1999-2016, Calerga Sàrl

Description

With one output argument, find(v) returns a vector containing the
indices of the nonzero elements of v. v can be an array of any dimen-
sion; the indices correspond to the internal storage ordering and can
be used to access the elements with a single subscript.

With two output arguments, find(M) returns two vectors contain-
ing the subscripts (row in the first output argument, column in the
second output argument) of the nonzero elements of 2-dim array M.
To obtain subscripts for an array of higher dimension, you can convert
the single output argument of find to subscripts with ind2sub.

With three output arguments, find(M) returns in addition the
nonzero values themselves in the third output argument.

With a second input argument n, find limits the maximum number
of elements found. It searches forward by default; with a third input
argument dir, find gives the n first nonzero values if dir is ’first’
or ’f’, and the n last nonzero values if dir is ’last’ or ’l’.

Examples
ix = find([1.2,0;0,3.6])
ix =
1
4

[s1,s2] = find([1.2,0;0,3.6])
s1 =
1
2

s2 =
1
2

[s1,s2,x] = find([1.2,0;0,3.6])
s1 =
1
2

s2 =
1
2

x =
1.2
3.6

A = rand(3)
A =
0.5599 0.3074 0.5275
0.3309 0.8077 0.3666
0.7981 0.6424 0.6023

find(A > 0.7, 2, ’last’)
7
5

LME Reference — arrays 271

See also
nnz, sort

flipdim

Flip an array along any dimension.

Syntax
B = flipdim(A, dim)

Description
flipdim(A,dim) gives an array which has the same size as A, but
where indices of dimension dim are reversed.

Examples
flipdim(cat(3, [1,2;3,4], [5,6;7,8]), 3)
2x2x2 array
(:,:,1) =
5 6
7 8

(:,:,2) =
1 2
3 4

See also
fliplr, flipud, rot90, reshape

fliplr

Flip an array or a list around its vertical axis.

Syntax
A2 = fliplr(A1)
list2 = fliplr(list1)

Description
fliplr(A1) gives an array A2 which has the same size as A1, but
where all columns are placed in reverse order.

fliplr(list1) gives a list list2 which has the same length as
list1, but where all top-level elements are placed in reverse order.
Elements themselves are left unchanged.

272 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
fliplr([1,2;3,4])
2 1
4 3

fliplr({1, ’x’, {1,2,3}})
{{1,2,3}, ’x’, 1}

See also
flipud, flipdim, rot90, reshape

flipud

Flip an array upside-down.

Syntax
A2 = flipud(A1)

Description
flipud(A1) gives an array A2 which has the same size as A1, but
where all lines are placed in reverse order.

Example
flipud([1,2;3,4])
3 4
1 2

See also
fliplr, flipdim, rot90, reshape

ind2sub

Conversion from single index to row/column subscripts.

Syntax
(i, j, ...) = ind2sub(size, ind)

Description
ind2sub(size,ind) gives the subscripts of the element which would
be retrieved from an array whose size is specified by size by the single
index ind. size must be either a scalar for square matrices or a vector
of two elements or more for arrays. ind can be an array; the result is
calculated separately for each element and has the same size.

LME Reference — arrays 273

Example
M = [3, 6; 8, 9];
M(3)
8

(i, j) = ind2sub(size(M), 3)
i =
2

j =
1

M(i, j)
8

See also

sub2ind, size

interp1

1D interpolation.

Syntax
yi = interp1(x, y, xi)
yi = interp1(x, y, xi, method)
yi = interp1(y, xi)
yi = interp1(y, xi, method)
yi = interp1(..., method, extraval)

Description

interp1(x,y,xi) interpolates data along one dimension. Input data
are defined by vector y, where element y(i) corresponds to coordi-
nates x(i). Interpolation is performed at points defined in vector xi;
the result is a vector of the same size as xi.

If y is an array, interpolation is performed along dimension 1 (i.e.
along its columns), and size(y,1) must be equal to length(x). Then
if xi is a vector, interpolation is performed at the same points for
each remaining dimensions of y, and the result is an array of size
[length(xi),size(y)(2:end)]; if xi is an array, all sizes must match
y except for the first one.

If x is missing, it defaults to 1:size(y,1).
The default interpolation method is piecewise linear. An additional

input argument can be provided to specify it with a string (only the
first character is considered):

274 Sysquake Remote ©1999-2016, Calerga Sàrl

Argument Meaning
’0’ or ’nearest’ nearest value
’<’ lower coordinate
’>’ higher coordinate
’1’ or ’linear’ piecewise linear
’3’ or ’cubic’ piecewise cubic
’p’ or ’pchip’ pchip

Cubic interpolation gives continuous values and first derivatives,
and null second derivatives at end points. Pchip (piecewise cubic Her-
mite interpolation) also gives continuous values and first derivatives,
but guarantees that the interpolant stays within the limits of the data
in each interval (in particular monotonicity is preserved) at the cost of
larger second derivatives.

With vectors, interp1 produces the same result as interpn; vector
orientations do not have to match, though.

When the method is followed by a scalar number extraval, that
value is assigned to all values outside the range defined by x (i.e.
extrapolated values). The default is NaN.

Examples
One-dimension interpolation:

interp1([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7])
nan 0.2000 0.3000 0.8333

interp1([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7], ’0’)
nan 0.2000 0.2000 1.0000

Interpolation of multiple values:

t = 0:10;
y = [sin(t’), cos(t’)];
tnew = 0:0.4:8;
ynew = interp1(t, y, tnew)
ynew =
0.0000 1.0000
0.3366 0.8161
...
0.8564 0.2143
0.9894 -0.1455

See also
interpn

interpn

Multidimensional interpolation.

LME Reference — arrays 275

Syntax
Vi = interpn(x1, ..., xn, V, xi1, ..., xin)
Vi = interpn(x1, ..., xn, V, xi1, ..., xin, method)
Vi = interpn(..., method, extraval)

Description
interpn(x1,...,xn,V,xi1,...,xin) interpolates data in a
space of n dimensions. Input data are defined by array V, where
element V(i,j,...) corresponds to coordinates x1(i), x2(j), etc.
Interpolation is performed for each coordinates defined by arrays
xi1, xi2, etc., which must all have the same size; the result is an
array of the same size.

Length of vectors x1, x2, ... must match the size of V along the
corresponding dimension. Vectors x1, x2, ... must be sorted (mono-
tonically increasing or decreasing), but they do not have to be spaced
uniformly. Interpolated points outside the input volume are set to nan.
Input and output data can be complex. Imaginary parts of coordinates
are ignored.

The default interpolation method is multilinear. An additional input
argument can be provided to specify it with a string (only the first
character is considered):

Argument Meaning
’0’ or ’nearest’ nearest value
’<’ lower coordinates
’>’ higher coordinates
’1’ or ’linear’ multilinear

Method ’<’ takes the sample where each coordinate has its in-
dex as large as possible, lower or equal to the interpolated value,
and smaller than the last coordinate. Method ’>’ takes the sample
where each coordinate has its index greater or equal to the interpo-
lated value.

When the method is followed by a scalar number extraval, that
value is assigned to all values outside the input volume (i.e. extrapo-
lated values). The default is NaN.

Examples
One-dimension interpolation:

interpn([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7])
nan 0.2000 0.3000 0.8333

interpn([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7], ’0’)
nan 0.2000 0.2000 1.0000

Three-dimension interpolation:

276 Sysquake Remote ©1999-2016, Calerga Sàrl

D = cat(3,[0,1;2,3],[4,5;6,7]);
interpn([0,1], [0,1], [0,1], D, 0.2, 0.7, 0.5)
3.1000

Image rotation (we define original coordinates between -0.5 and 0.5
in vector c and arrays X and Y, and the image as a linear gradient
between 0 and 1):

c = -0.5:0.01:0.5;
X = repmat(c, 101, 1);
Y = X’;
phi = 0.2;
Xi = cos(phi) * X - sin(phi) * Y;
Yi = sin(phi) * X + cos(phi) * Y;
D = 0.5 + X;
E = interpn(c, c, D, Xi, Yi);
E(isnan(E)) = 0.5;

See also
interp1

intersect

Set intersection.

Syntax
c = intersect(a, b)
(c, ia, ib) = intersect(a, b)

Description
intersect(a,b) gives the intersection of sets a and b, i.e. it gives the
set of members of both sets a and b. Sets are any type of numeric,
character or logical arrays, or lists or cell arrays of character strings.
Multiple elements of input arguments are considered as single mem-
bers; the result is always sorted and has unique elements.

The optional second and third output arguments are vectors of in-
dices such that if (c,ia,ib)=intersect(a,b), then c is a(ia) as well
as b(ib).

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = intersect(a, b)
c =
{’bbb’,’bc’}

LME Reference — arrays 277

ia =
3 2

ib =
4 2

a(ia)
{’bbb’,’bc’}

b(ib)
{’bbb’,’bc’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also
unique, union, setdiff, setxor, ismember

inthist

Histogram of an integer array.

Syntax
h = inthist(A, n)

Description
inthist(A,n) computes the histogram of the elements of integer ar-
ray A between 0 and n-1. A must have an integer type (int8/16/32/64
or uint8/16/32/64). The result is a row vector h of length n, where h(i)
is the number of elements in A with value i-1.

Example
A = map2int(rand(100), 0, 1, ’uint8’);
h = inthist(A, 10)
h =
37 31 34 34 32 35 38 36 36 32

See also
hist

ipermute

Inverse permutation of the dimensions of an array.

278 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
B = ipermute(A, perm)

Description
ipermute(A,perm) returns an array with the same elements as A, but
where dimensions are permuted according to the vector of dimensions
perm. It performs the inverse permutation of permute. perm must
contain integers from 1 to n; dimension i in A becomes dimension
perm(i) in the result.

Example
size(ipermute(rand(3,4,5), [2,3,1]))
5 3 4

See also
permute, ndims, squeeze

isempty

Test for empty array, list or struct.

Syntax
b = isempty(A)
b = isempty(list)
b = isempty(S)

Description
isempty(obj) gives true if obj is the empty array [] of any type (nu-
meric, char, logical or cell array) or the empty struct, and false other-
wise.

Examples
isempty([])
true

isempty(0)
false

isempty(’’)
true

isempty({})
true

isempty({{}})
false

isempty(struct)
true

LME Reference — arrays 279

See also
size, length

iscell

Test for cell arrays.

Syntax
b = iscell(X)

Description
iscell(X) gives true if X is a cell array or a list, and false otherwise.

Examples
iscell({1;2})
true

iscell({1,2})
true

islist({1;2})
false

See also
islist

ismember

Test for set membership.

Syntax
b = ismember(m, s)
(b, ix) = ismember(m, s)

Description
ismember(m,s) tests if elements of array m are members of set s. The
result is a logical array the same size as m; each element is true if the
corresponding element of m is a member of s, or false otherwise. m
must be a numeric array or a cell array, matching type of set s.

With a second output argument ix, ismember also gives the index
of the corresponding element of m in s, or 0 if the element is not a
member of s.

280 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
s = {’a’,’bc’,’bbb’,’de’};
m = {’d’,’a’,’x’;’de’,’a’,’z’};
(b, ix) = ismember(m, s)
b =
F T F
T T F

ix =
0 1 0

4 1 0

See also
intersect, union, setdiff, setxor

length

Length of a vector or a list.

Syntax
n = length(v)
n = length(list)

Description
length(v) gives the length of vector v. length(A) gives the num-
ber of elements along the largest dimension of array A. length(list)
gives the number of elements in a list.

Examples
length(1:5)
5

length((1:5)’)
5

length(ones(2,3))
3

length({1, 1:6, ’abc’})
3

length({{}})
1

See also
size, numel, end

linspace

Sequence of linearly-spaced elements.

LME Reference — arrays 281

Syntax
v = linspace(x1, x2)
v = linspace(x1, x2, n)

Description
linspace(x1,x2) produces a row vector of 50 values spaced linearly
from x1 to x2 inclusive. With a third argument, linspace(x1,x2,n)
produces a row vector of n values.

Examples
linspace(1,10)
1.0000 1.1837 1.3673 ... 9.8163 10.0000

linspace(1,2,6)
1.0 1.2 1.4 1.6 1.8 2.0

See also
logspace, operator :

logspace

Sequence of logarithmically-spaced elements.

Syntax
v = logspace(x1, x2)
v = logspace(x1, x2, n)

Description
logspace(x1,x2) produces a row vector of 50 values spaced log-
arithmically from 10̂ x1 to 10̂ x2 inclusive. With a third argument,
logspace(x1,x2,n) produces a row vector of n values.

Example
logspace(0,1)
1.0000 1.0481 1.0985 ... 9.1030 9.5410 10.0000

See also
linspace, operator :

magic

Magic square.

282 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
M = magic(n)

Description
A magic square is a square array of size n-by-n which contains each
integer between 1 and n2, and whose sum of each column and of each
line is equal. magic(n) returns magic square of size n-by-n.

There is no 2-by-2 magic square. If the size is 2, the matrix [1,3;4,2]
is returned instead.

Example
magic(3)
8 1 6
3 5 7
4 9 2

See also
zeros, ones, eye, rand, randn

meshgrid

Arrays of X-Y coordinates.

Syntax
(X, Y) = meshgrid(x, y)
(X, Y) = meshgrid(x)

Description
meshgrid(x,y) produces two arrays of x and y coordinates suitable
for the evaluation of a function of two variables. The input argument
x is copied to the rows of the first output argument, and the input
argument y is copied to the columns of the second output argument,
so that both arrays have the same size. meshgrid(x) is equivalent to
meshgrid(x,x).

Example
(X, Y) = meshgrid(1:5, 2:4)
X =
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Y =
2 2 2 2 2

LME Reference — arrays 283

3 3 3 3 3
4 4 4 4 4

Z = atan2(X, Y)
Z =
0.4636 0.7854 0.9828 1.1071 1.1903
0.3218 0.5880 0.7854 0.9273 1.0304
0.2450 0.4636 0.6435 0.7854 0.8961

See also
ndgrid, repmat

ndgrid

Arrays of N-dimension coordinates.

Syntax
(X1, ..., Xn) = ndgrid(x1, ..., xn)
(X1, ..., Xn) = ndgrid(x)

Description
ndgrid(x1,...,xn) produces n arrays of n dimensions. Array i is
obtained by reshaping input argument i as a vector along dimension
i and replicating it along all other dimensions to match the length of
other input vectors. All output arguments have the same size.

With one input argument, ndgrid reuses it to match the number of
output arguments.

(Y,X)=ndgrid(y,x) is equivalent to (X,Y)=meshgrid(x,y).

Example
(X1, X2) = ndgrid(1:3)
X1 =
1 1 1
2 2 2
3 3 3

X2 =
1 2 3
1 2 3
1 2 3

See also
meshgrid, repmat

ndims

Number of dimensions of an array.

284 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
n = ndims(A)

Description
ndims(A) returns the number of dimensions of array A, which is at
least 2. Scalars, row and column vectors, and matrices have 2 dimen-
sions.

Examples
ndims(magic(3))
2

ndims(rand(3,4,5))
3

See also
size, squeeze, permute, ipermute

nnz

Number of nonzero elements.

Syntax
n = nnz(A)

Description
nnz(A) returns the number of nonzero elements of array A. Argument
A must be a numeric, char or logical array.

Examples
nnz(-2:2)
4

nnz(magic(3) > 3)
6

See also
find

num2cell

Conversion from numeric array to cell array.

LME Reference — arrays 285

Syntax
C = num2cell(A)
C = num2cell(A, dims)

Description
num2cell(A) creates a cell array the same size as numeric array A.
The value of each cell is the corresponding elements of A.

num2cell(A,dims) cuts array A along the dimensions not in dims
and creates a cell array with the result. Dimensions of cell array are
the same as dimensions of A for dimensions not in dims, and 1 for
dimensions in dims; dimensions of cells are the same as dimensions
of A for dimensions in dims, and 1 for dimensions not in dims.

Argument A can be a numeric array of any dimension and class, a
logical array, or a char array.

Examples
num2cell([1, 2; 3, 4])

{1, 2; 3, 4}
num2cell([1, 2; 3, 4], 1)
{[1; 3], [2; 4]}

num2cell([1, 2; 3, 4], 2)
{[1, 2]; [3, 4]}

See also
num2list, permute

numel

Number of elements of an array.

Syntax
n = numel(A)

Description
numel(A) gives the number of elements of array A. It is equivalent to
prod(size(A)).

Examples
numel(1:5)
5

numel(ones(2, 3))
6

numel({1, 1:6; ’abc’, []})
4

numel({2, ’vwxyz’})
2

286 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
size, length

ones

Array of ones.

Syntax
A = ones(n)
A = ones(n1, n2, ...)
A = ones([n1, n2, ...])
A = ones(..., type)

Description
ones builds an array whose elements are 1. The size of the array is
specified by one integer for a square matrix, or several integers (either
as separate arguments or in a vector) for an array of any size.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Examples
ones(2,3)
1 1 1
1 1 1

ones(2, ’int32’)
2x2 int32 array
1 1
1 1

See also
zeros, eye, rand, randn, repmat

permute

Permutation of the dimensions of an array.

Syntax
B = permute(A, perm)

LME Reference — arrays 287

Description
permute(A,perm) returns an array with the same elements as A, but
where dimensions are permuted according to the vector of dimensions
perm. It is a generalization of the matrix transpose operator. perm
must contain integers from 1 to n; dimension perm(i) in A becomes
dimension i in the result.

Example
size(permute(rand(3,4,5), [2,3,1]))
4 5 3

See also
ndims, squeeze, ipermute, num2cell

rand

Uniformly-distributed random number.

Syntax
x = rand
A = rand(n)
A = rand(n1, n2, ...)
A = rand([n1, n2, ...])
A = rand(..., type)
rand(’seed’, s);

Description
rand builds a scalar pseudo-random number uniformly distributed be-
tween 0 and 1. The lower bound 0 may be reached, but the upper
bound 1 is never. The default generator is based on a scalar 64-bit
seed, which theoretically has a period of 2̂ 64-2̂ 32 numbers. This
seed can be set with the arguments rand(’seed’,s), where s is a
scalar. rand(’seed’,s) returns the empty array [] as output argu-
ment. To discard it, the statement should be followed by a semicolon.
The generator can be changed with rng.

rand(n), rand(n1,n2,...) and rand([n1,n2,...]) return an n-
by-n square array or an array of arbitrary size whose elements are
pseudo-random numbers uniformly distributed between 0 and 1.

An additional input argument can be used to specify the type of
the result, ’double’ (default) or ’single’. With the special value
’raw’, rand returns an unscaled integer result of type double which
corresponds to the uniform output of the random generator before it
is mapped to the range between 0 and 1. The scaling factor can be
retrieved in the field rawmax of the structure returned by rng.

288 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
rand
0.2361

rand(1, 3)
0.6679 0.8195 0.2786

rand(’seed’,0);
rand
0.2361

See also
randn, randi, rng

randi

Uniformly-distributed integer random number.

Syntax
x = randi(nmax)
x = randi(range)
M = randi(..., n)
M = randi(..., n1, n2, ...)
M = randi(..., [n1, n2, ...])
M = randi(..., class)

Description
randi(nmax) produces a scalar pseudo-random integer number uni-
formly distributed between 1 and nmax. randi(range), where range is
a two-element vector [nmin,nmax], produces a scalar pseudo-random
integer number uniformly distributed between nmin and nmax.

With more numeric input arguments, randi produces arrays of
pseudo-random integer numbers. randi(range,n) produces
an n-by-n square array, and randi(range,[n1,n2,...]) or
randi(range,n1,n2,...) produces an array of the specified size.

The number class of the result can be specified with a final string
argument. The default is ’double’.

Examples
randi(10)
3

randi(10, [1, 5])
3 4 6 8 1

randi([10,15], [1, 5])
12 14 13 10 13

randi(8, [1, 5], ’uint8’)
1x5 uint8 array
3 4 5 7 2

LME Reference — arrays 289

See also
rand, randn, rng

randn

Normally-distributed random number

Syntax
x = randn
A = randn(n)
A = randn(n1, n2, ...)
A = randn([n1, n2, ...])
A = randn(..., type)
randn(’seed’, s);

Description
randn builds a scalar pseudo-random number chosen from a normal
distribution with zero mean and unit variance. The default genera-
tor is based on a scalar 64-bit seed, which theoretically has a pe-
riod of 2̂ 64-2̂ 32 numbers. This seed can be set with the arguments
randn(’seed’,s), where s is a scalar. The seed is the same as the
seed of rand and rng. randn(’seed’,s) returns the empty array [] as
output argument. To discard it, the statement should be followed by a
semicolon. The generator can be changed with rng.

randn(n), randn(n1,n2,...) and randn([n1,n2,...]) return an
n-by-n square array or an array of arbitrary size whose elements are
pseudo-random numbers chosen from a normal distribution.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’ (default) or ’single’.

Examples
randn
1.5927

randn(1, 3)
0.7856 0.6489 -0.8141

randn(’seed’,0);
randn
1.5927

See also
rand, randi, rng

repmat

Replicate an array.

290 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
B = repmat(A, n)
B = repmat(A, m, n)
B = repmat(A, [n1,...])

Description
repmat creates an array with multiple copies of its first argument. It
can be seen as an extended version of ones, where 1 is replaced by
an arbitrary array.

With 3 input arguments, repmat(A,m,n) replicates array A m times
vertically and n times horizontally. The type of the first argument
(number, character, logical, cell, or structure array) is preserved.

With two input arguments, repmat(A,n) produces the same result
as repmat(A,n,n).

With a vector as second argument, the array can be replicated
along more than two dimensions; repmat(A,m,n) produces the same
result as repmat(A,[m,n]).

Examples
repmat([1,2;3,4], 1, 2)
1 2 1 2
3 4 3 4

repmat(’abc’, 3)
abcabcabc
abcabcabc
abcabcabc

See also
zeros, ones, operator :, kron, replist

reshape

Rearrange the elements of an array to change its shape.

Syntax
A2 = reshape(A1)
A2 = reshape(A1, n1, n2, ...)
A2 = reshape(A1, [n1, n2, ...])

Description
reshape(A1) gives a column vector with all the elements of array A1.
If A1 is a variable, reshape(A1) is the same as A1(:).

reshape(A1,n1,n2,...) or reshape(A1,[n1,n2,...]) changes
the dimensions of array A1 so that the result has m rows and n columns.

LME Reference — arrays 291

A1 must have n1*n2*... elements; read row-wise, both A1 and the
result have the same elements.

When dimensions are given as separate elements, one of them can
be replaced with the empty array []; it is replaced by the value such
that the number of elements of the result matches the size of input
array.

Remark: code should not rely on the internal data layout. Ar-
ray elements are currently stored row-wise, but this may change in
the future. reshape will remain consistant with indexing, though;
reshape(A,s)(i)==A(i) for any compatible size s.

Example
reshape([1,2,3;10,20,30], 3, 2)
1 2
3 10
20 30

reshape(1:12, 3, [])
1 2 3 4
5 6 7 8
9 10 11 12

See also
operator ()

rng

State of random number generator.

Syntax
rng(type)
rng(seed)
rng(seed, type)
rng(state)
state = rng

Description
Random (actually pseudo-random) number generators produce se-
quences of numbers whose statistics make them difficult to distinguish
from true random numbers. They are used by functions rand, randi,
randn and random. They are characterized by a type string and a
state.

With a numeric input argument, rng(seed) sets the state based
on a seed. The state is usually an array of unsigned 32-bit integer
numbers. rng uses the seed to produce an internal state which is
valid for the type of random number generator. The default seed is 0.

292 Sysquake Remote ©1999-2016, Calerga Sàrl

With a string input argument, rng(type) sets the type of the ran-
dom number generator and resets the state to its initial value (default
seed). The following types are recognized:

’original’ Original generator used until LME 6.

’mcg16807’ Multiplicative congruential generator. The state is de-
fined by s(i+1)=mod(a*s(i),m) with a=7̂ 5 and m=2̂ 31-1, and the
generated value is s(i)/m.

’mwc’ Concatenation of two 16-bit multiply-with-carry generators.
The period is about 2̂ 60.

’kiss’ or ’default’ Combination of mwc, a 3-shift register, and
a congruential generator. The period is about 2̂ 123.

With two input arguments, rng(seed,type) sets both the seed and
the type of the random number generator.

With an output argument, state=rng gets the current state, which
can be restored later by calling rng(state). The state is a structure.

Examples
rng(123);
R = rand(1,2)
R =
0.2838 0.4196

s = rng
s =
type: ’original’
state: real 2x1
rawmax: 4294967296

R = rand
R =
0.5788

rng(s)
R = rand
R =
0.5788

Reference
The MWC and KISS generators are described in George Marsaglia, Ran-
dom numbers for C: The END?, Usenet, sci.stat.math, 20 Jan 1999.

See also
rand, randn, randi

LME Reference — arrays 293

rot90

Array rotation.

Syntax
A2 = rot90(A1)
A2 = rot90(A1, k)

Description
rot90(A1) rotates array A1 90 degrees counter-clockwise; the top left
element of A1 becomes the bottom left element of A2. If A1 is an array
with more than two dimensions, each plane corresponding to the first
two dimensions is rotated.

In rot90(A1,k), the second argument is the number of times the
array is rotated 90 degrees counter-clockwise. With k = 2, the array
is rotated by 180 degrees; with k = 3 or k = -1, the array is rotated
by 90 degrees clockwise.

Examples
rot90([1,2,3;4,5,6])
3 6
2 5
1 4

rot90([1,2,3;4,5,6], -1)
4 1
5 2
6 3

rot90([1,2,3;4,5,6], -1)
6 5 4
3 2 1

fliplr(flipud([1,2,3;4,5,6]))
6 5 4
3 2 1

See also
fliplr, flipud, reshape

setdiff

Set difference.

Syntax
c = setdiff(a, b)
(c, ia) = setdiff(a, b)

294 Sysquake Remote ©1999-2016, Calerga Sàrl

Description

setdiff(a,b) gives the difference between sets a and b, i.e. the set
of members of set a which do not belong to b. Sets are any type of
numeric, character or logical arrays, or lists or cell arrays of character
strings. Multiple elements of input arguments are considered as single
members; the result is always sorted and has unique elements.

The optional second output argument is a vector of indices such
that if (c,ia)=setdiff(a,b), then c is a(ia).

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia) = setdiff(a, b)
c =
{’a’,’de’}

ia =
1 4

a(ia)
{’a’,’de’}

See also

unique, union, intersect, setxor, ismember

setxor

Set exclusive or.

Syntax
c = setxor(a, b)
(c, ia, ib) = setxor(a, b)

Description

setxor(a,b) performs an exclusive or operation between sets a and
b, i.e. it gives the set of members of sets a and b which are not mem-
bers of the intersection of a and b. Sets are any type of numeric,
character or logical arrays, or lists or cell arrays of character strings.
Multiple elements of input arguments are considered as single mem-
bers; the result is always sorted and has unique elements.

The optional second and third output arguments are vectors of
indices such that if (c,ia,ib)=setxor(a,b), then c is the union of
a(ia) and b(ib).

LME Reference — arrays 295

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = setxor(a, b)
c =
{’a’,’aa’,’de’,’z’}

ia =
1 4

ib =
3 1

union(a(ia),b(ib))
{’a’,’aa’,’de’,’z’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also
unique, union, intersect, setdiff, ismember

size

Size of an array.

Syntax
v = size(A)
(m, n) = size(A)
m = size(A, i)

Description
size(A) returns the number of rows and the number of elements
along each dimension of array A, either in a row vector or as scalars if
there are two output arguments or more.

size(A,i) gives the number of elements in array A along dimen-
sion i: size(A,1) gives the number of rows and size(A,2) the num-
ber of columns.

Examples
M = ones(3, 5);
size(M)
3 5

(m, n) = size(M)
m =

296 Sysquake Remote ©1999-2016, Calerga Sàrl

3
n =
5

size(M, 1)
3

size(M, 2)
5

See also
length, numel, ndims, end

sort

Array sort.

Syntax
(A_sorted, ix) = sort(A)
(A_sorted, ix) = sort(A, dim)
(A_sorted, ix) = sort(A, dir)
(A_sorted, ix) = sort(A, dim, dir)
(list_sorted, ix) = sort(list)
(list_sorted, ix) = sort(list, dir)

Description
sort(A) sorts separately the elements of each column of array A, or
the elements of A if it is a row vector. The result has the same size as
A. Elements are sorted in ascending order, with NaNs at the end. For
complex arrays, numbers are sorted by magnitude.

The optional second output argument gives the permutation array
which transforms A into the sorted array. It can be used to reorder
elements in another array or to sort the rows of a matrix with respect
to one of its columns, as shown in the last example below. Order of
consecutive identical elements is preserved.

If a second numeric argument dim is provided, the sort is performed
along dimension dim (columns if dim is 1, rows if 2, etc.)

An additional argument can specify the ordering direction. It
must be the string ’ascending’ (or ’a’) for ascending order, or
’descending’ (or ’d’) for descending order. In both cases, NaNs are
moved to the end.

sort(list) sorts the elements of a list, which must be strings. Cell
arrays are sorted like lists, not column-wise like numeric arrays. The
second output argument is a row vector. The direction can be specified
with a second input argument.

LME Reference — arrays 297

Examples
sort([3,6,2,3,9,1,2])
1 2 2 3 3 6 9

sort([2,5,3;nan,4,2;6,1,1])
2 1 1
6 4 2
nan 5 3

sort([2,5,3;nan,4,2;6,1,1], ’d’)
6 5 3
2 4 2
nan 1 1

sort({’def’, ’abcd’, ’abc’})
{’abc’, ’abcd’, ’def’}

To sort the rows of an array after the first column, one can obtain the
permutation vector by sorting the first column, and use it as subscripts
on the array rows:

M = [2,4; 5,1; 3,9; 4,0]
2 4
5 1
3 9
4 0

(Ms, ix) = sort(M(:,1));
M(ix,:)
2 4
3 9
4 0
5 1

Algorithm
Shell sort.

See also
unique

squeeze

Suppression of singleton dimensions of an array.

Syntax
B = squeeze(A)

Description
squeeze(A) returns an array with the same elements as A, but where
dimensions equal to 1 are removed. The result has at least 2 dimen-
sions; row and column vectors keep their dimensions.

298 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
size(squeeze(rand(1,2,3,1,4)))
2 3 4

size(squeeze(1:5))
1 5

See also
permute, ndims

sub2ind

Conversion from row/column subscripts to single index.

Syntax
ind = sub2ind(size, i, j)
ind = sub2ind(size, i, j, k, ...)

Description
sub2ind(size,i,j) gives the single index which can be used to re-
trieve the element corresponding to the i:th row and the j:th column
of an array whose size is specified by size. size must be either a
scalar for square matrices or a vector of two elements or more for
other arrays. If i and j are arrays, they must have the same size:
the result is calculated separately for each element and has the same
size.

sub2ind also accepts sizes and subscripts for arrays with more than
2 dimensions. The number of indices must match the length of size.

Example
M = [3, 6; 8, 9];
M(2, 1)
8

sub2ind(size(M), 2, 1)
7

M(3)
8

See also
ind2sub, size

tril

Extraction of the lower triangular part of a matrix.

LME Reference — arrays 299

Syntax
L = tril(M)
L = tril(M,k)

Description
tril(M) extracts the lower triangular part of a matrix; the result is
a matrix of the same size where all the elements above the main di-
agonal are set to zero. A second argument can be used to specify
another diagonal: 0 is the main diagonal, positive values are above
and negative values below.

Examples
M = magic(3)
M =
8 1 6
3 5 7
4 9 2

tril(M)
8 0 0
3 5 0
4 9 2

tril(M,1)
8 1 0
3 5 7
4 9 2

See also
triu, diag

triu

Extraction of the upper triangular part of a matrix.

Syntax
U = triu(M)
U = triu(M,k)

Description
tril(M) extracts the upper triangular part of a matrix; the result is
a matrix of the same size where all the elements below the main di-
agonal are set to zero. A second argument can be used to specify
another diagonal; 0 is the main diagonal, positive values are above
and negative values below.

300 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
M = magic(3)
M =
8 1 6
3 5 7
4 9 2

triu(M)
8 1 6
0 5 7
0 0 2

triu(M,1)
0 1 6
0 0 7
0 0 0

See also
tril, diag

union

Set union.

Syntax
c = union(a, b)
(c, ia, ib) = union(a, b)

Description
union(a,b) gives the union of sets a and b, i.e. it gives the set of
members of sets a or b or both. Sets are any type of numeric, charac-
ter or logical arrays, or lists or cell arrays of character strings. Multiple
elements of input arguments are considered as single members; the
result is always sorted and has unique elements.

The optional second and third output arguments are vectors of in-
dices such that if (c,ia,ib)=union(a,b), then elements of c are the
elements of a(ia) or b(ib); the intersection of a(ia) and b(ib) is
empty.

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = union(a, b)
c =
{’a’,’aa’,’bbb’,’bc’,’de’,’z’}

ia =
1 3 2 4

LME Reference — arrays 301

ib =
3 1

a(ia)
{’a’,’bbb’,’bc’,’de’}

b(ib)
{’aa’,’z’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also
unique, intersect, setdiff, setxor, ismember

unique

Keep unique elements.

Syntax
v2 = unique(v1)
list2 = unique(list1)
(b, ia, ib) = unique(a)

Description
With an array argument, unique(v1) sorts its elements and removes
duplicate elements. Unless v1 is a row vector, v1 is considered as a
column vector.

With an argument which is a list of strings, unique(list) sorts its
elements and removes duplicate elements.

The optional second output argument is set to a vector of indices
such that if (b,ia)=unique(a), then b is a(ia).

The optional third output argument is set to a vector of indices such
that if (b,ia,ib)=unique(a), then a is b(ib).

Examples
(b,ia,ib) = unique([4,7,3,8,7,1,3])
b =
1 3 4 7 8

ia =
6 3 1 2 4

ib =
3 4 2 5 4 1 2

unique({’def’, ’ab’, ’def’, ’abc’})
{’ab’, ’abc’, ’def’}

302 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
sort, union, intersect, setdiff, setxor, ismember

unwrap

Unwrap angle sequence.

Syntax
a2 = unwrap(a1)
a2 = unwrap(a1, tol)
A2 = unwrap(A1, tol, dim)

Description
unwrap(a1), where a1 is a vector of angles in radians, returns a vector
a2 of the same length, with the same values modulo 2π, starting with
the same value, and where differences between consecutive values do
not exceed π. It is useful for interpolation in a discrete set of angles
and for plotting.

With two input arguments, unwrap(a1,tol) reduces the difference
between two consecutive values only if it is larger (in absolute value)
than tol. If tol is smaller than π, or the empty array [], the default
value of π is used.

With three input arguments, unwrap(A1,tol,dim) operates along
dimension dim. The result is an array of the same size as A1. The
default dimension for arrays is 1.

Example
unwrap([0, 2, 4, 6, 0, 2])
0.00 2.00 4.00 6.00 6.28 8.28

See also
mod, rem

zeros

Null array.

Syntax
A = zeros(n)
A = zeros(n1,n2,...)
A = zeros([n1,n2,...])
A = zeros(..., type)

LME Reference — triangulation 303

Description
zeros builds an array whose elements are 0. The size of the array is
specified by one integer for a square matrix, or several integers (either
as separate arguments or in a vector) for an array of any size.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Examples
zeros([2,3])
0 0 0
0 0 0

zeros(2)
0 0
0 0

zeros(1, 5, ’uint16’)
1x5 uint16 array
0 0 0 0 0

See also
ones, cell, eye, rand, randn, repmat

5.19 Triangulation Functions

delaunay

2-d Delaunay triangulation.

Syntax
t = delaunay(x, y)
(t, e) = delaunay(x, y)

Description
delaunay(x,y) calculates the Delaunay triangulation of 2-d points
given by arrays x and y. Both arrays must have the same number
of values, m. The result is an array of three columns. Each row corre-
sponds to a triangle; values are indices in x and y.

The second output argument, if requested, is a logical vector of size
m-by-1; elements are true if the corresponding point in x and y belongs
to the convex hull of the set of points.

The Delaunay triangulation is a net of triangles which link all the
starting points in such a way that no point is included in the circum-
scribed circle of any other triangle. Triangles are "as equilateral" as
possible.

304 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
Delaunay triangulation of 20 random points:

x = rand(20, 1);
y = rand(20, 1);
(t, e) = delaunay(x, y);

With Sysquake graphical functions, points belonging to the convex hull
are displayed as crosses and interior points as circles:

clf;
scale equal;
plot(x(e), y(e), ’x’);
plot(x(̃ e), y(̃ e), ’o’);

Array of vertex indices is modified to have closed triangles:

t = [t, t(:, 1)];

Triangles are displayed:

plot(x(t), y(t));

See also
delaunayn, voronoi

delaunayn

N-d Delaunay triangulation.

Syntax
t = delaunayn(x)
(t, e) = delaunayn(x)

Description
delaunayn(x) calculates the Delaunay triangulation of points given
by the rows of array x in a space of dimension size(x,2). The result
is an array with one more column. Each row corresponds to a simplex;
values are row indices in x and give the vertices of each polyhedron.

The second output argument, if requested, is a logical vector with
as many elements as rows in x; elements are true if the corresponding
point in x belongs to the convex hull of the set of points.

See also
delaunay, tsearchn, voronoin

LME Reference — triangulation 305

griddata

Data interpolation in 2-d plane.

Syntax
vi = griddata(x, y, v, xi, yi)
vi = griddata(x, y, v, xi, yi, method)

Description
griddata(x,y,v,xi,yi) interpolates values at coordinates given by
the corresponding elements of arrays xi and yi in a 2-dimension
plane. Original data are defined by corresponding elements of ar-
rays x, y, and v (which must have the same size), such that the
value at coordinate [x(i);y(i)] is v(i). The result is an array with
the same size as xi and yi where vi(j) is the value interpolated at
[xi(j);yi(j)].

All coordinates are real (imaginary components are ignored). Val-
ues v and vi can be real or complex. The result for coordinates outside
the convex hull defined by x and y is NaN.

griddata is based on Delaunay triangulation. The interpolation
method used in each triangle is linear by default, or can be specified
with an additional input argument, a string:

Argument Meaning
’0’ or ’nearest’ nearest value
’1’ or ’linear’ linear

Example
Nearest value interpolation in 2D plane of a few values v(x,y). The
plane is sampled with a regular grid with meshgrid.

x = [0.2; 1.8; 0.7; 0.9; 1.6];
y = [0.2; 0.7; 1.8; 1.1; 1.7];
v = [0.1; 0.3; 0.9; 0.5; 0.4];
(xi, yi) = meshgrid(0:0.01:2);
vi = griddata(x, y, v, xi, yi, ’0’);

In Sysquake, the result can be displayed as a contour plot. For loca-
tions where the values cannot be interpolated, i.e. outside the convex
hull defined by x and y, values are set to 0.

vi(isnan(vi)) = 0;
contour(vi, [], 20);

See also
delaunay, tsearch, griddatan, interpn

306 Sysquake Remote ©1999-2016, Calerga Sàrl

griddatan

Data interpolation in N-d space.

Syntax
vi = griddatan(x, v, xi)
vi = griddatan(x, v, xi, method)

Description
griddatan(x,v,xi) interpolates values at coordinates given by the
p rows of p-by-n array xi in an n-dimension space. Original data are
defined by m-by-n array x and m-by-1 column vector v, such that the
value at coordinate x(i,:)’ is v(i). The result is a p-by-1 column
vector vi where vi(j) is the value interpolated at xi(j,:)’.

Coordinates x and xi are real (imaginary components are ignored).
Values v and vi can be real or complex. The result for coordinates
outside the convex hull defined by x is NaN.

griddatan is based on Delaunay triangulation. The interpolation
method used in each simplex is linear by default, or can be specified
with an additional input argument, a string:

Argument Meaning
’0’ or ’nearest’ nearest value
’1’ or ’linear’ linear

Example
Linear interpolation in 2D plane of a few values v(x,y). The plane is
sampled with a regular grid with meshgrid. Since griddatan interpo-
lates a 1-dim array of points, the result is reshaped to match x and y
(compare with the example of griddata).

x = [0.2; 1.8; 0.7; 0.9; 1.6];
y = [0.2; 0.7; 1.8; 1.1; 1.7];
v = [0.1; 0.3; 0.9; 0.5; 0.4];
(xi, yi) = meshgrid(0:0.01:2);
vi = griddatan([x,y], v, [xi(:),yi(:)], ’1’);
vi = reshape(vi, size(xi));

In Sysquake, the result can be displayed as a contour plot. For loca-
tions where the values cannot be interpolated, i.e. outside the convex
hull defined by x and y, values are set to 0.

vi(isnan(vi)) = 0;
contour(vi, [], 20);

See also
delaunayn, tsearchn, griddata, interpn

LME Reference — triangulation 307

tsearch

Search of points in triangles.

Syntax
ix = tsearch(x, y, t, xi, yi)

Description

tsearch(x,y,t,xi,yi) searches in which triangle is located each
point given by the corresponding elements of arrays xi and yi.
Corresponding elements of arrays x and y represent the vertices of
the triangles, and rows of array t represent their indices in x and y;
array t is usually the result of delaunay. Dimensions of x and y, and
of xi and yi, must be equal. The result is an array with the same size
as xi and yi where each element is the row index in t of the first
triangle which contains the point, or NaN if the point is outside all
triangles (i.e. outside the convex hull of points defined by x and y if t
is a proper triangulation such as the one computed with delaunay).

Example

Search for triangles containing points [0,0] and [0,1] corresponding to
Delaunay triangulation of 20 random points:

x = randn(20, 1);
y = randn(20, 1);
t = delaunay(x, y);
xi = [0, 0];
yi = [0, 1];
ix = tsearch(x, y, t, xi, yi);

See also

tsearchn, delaunay, voronoi, griddata

tsearchn

Search of points in triangulation simplices.

Syntax
ix = tsearchn(x, t, xi)

308 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
tsearchn(x,t,xi) searches in which simplex each point given by the
rows of array xi is located. Rows of array x represent the vertices of
the simplices, and rows of array t represent their indices in x; array t
is usually the result of delaunayn. Dimensions must match: in a space
of n dimensions, x and xi have n columns, and t has n+1 columns. The
result is a column vector with one element for each row of xi, which
is the row index in t of the first simplex which contains the point, or
NaN if the point is outside all simplices (i.e. outside the convex hull of
points x if t is a proper triangulation of x such as the one computed
with delaunayn).

Example
Search for simplices containing points [0,0] and [0,1] corresponding to
Delaunay triangulation of 20 random points:

x = randn(20, 2);
t = delaunayn(x);
xi = [0, 0; 0, 1];
ix = tsearchn(x, t, xi);

See also
tsearch, delaunayn, voronoin, griddatan

voronoi

2-d Voronoi tessalation.

Syntax
(v, p) = voronoi(x, y)

Description
voronoi(x,y) calculates the Voronoi tessalation of the set of 2-d
points given by arrays x and y. Both arrays must have the same
number of values, m. The first output argument v is an array of two
columns which contains the coordinates of the vertices of the Voronoi
cells, one row per vertex. The first row contains infinity and is used as
a marker for unbounded Voronoi cells. The second output argument p
is a list of vectors of row indices in v; each element describes the
Voronoi cell corresponding to a point in x. In each cell, vertices are
sorted counterclockwise.

Voronoi tessalation is a tessalation (a partition of the plane) such
that each region is the set of points closer to one of the initial point
than to any other one. Two regions are in contact if and only if their
initial points are linked in the corresponding Delaunay triangulation.

LME Reference — triangulation 309

Example
Voronoi tessalation of 20 random points:

x = rand(20, 1);
y = rand(20, 1);
(v, p) = voronoi(x, y);

These points are displayed as crosses with Sysquake graphical func-
tions. The scale is fixed, because Voronoi polygons can have vertices
which are far away from the points.

clf;
scale(’equal’, [0,1,0,1]);
plot(x, y, ’x’);

Voronoi polygons are displayed in a loop, skipping unbounded poly-
gons. The first vertex is repeated to have closed polygons. Since plot
expects row vectors, vertex coordinates are transposed.

for p1 = p
if ãny(p1 == 1)

p1 = [p1, p1(1)];
plot(v(p1,1)’, v(p1,2)’);

end
end

See also
voronoin, delaunay

voronoin

N-d Voronoi tessalation.

Syntax
(v, p) = voronoin(x)

Description
voronoin(x) calculates the Voronoi tessalation of the set of points
given by the rows of arrays x in a space of dimension n=size(x,2).
The first output argument v is an array of n columns which contains
the coordinates of the vertices of the Voronoi cells, one row per vertex.
The first row contains infinity and is used as a marker for unbounded
Voronoi cells. The second output argument p is a list of vectors of row
indices in v; each element describes the Voronoi cell corresponding to
a point in x. In each cell, vertices are sorted by index.

310 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
voronoi, delaunayn

5.20 Integer Functions

uint8 uint16 uint32 uint64 int8 int16 int32 int64

Conversion to integer types.

Syntax
B = uint8(A)
B = uint16(A)
B = uint32(A)
B = uint64(A)
B = int8(A)
B = int16(A)
B = int32(A)
B = int64(A)

Description
The functions convert a number or an array to unsigned or signed
integers. The name contains the size of the integer in bits.

To avoid a conversion from double to integer, constant literal num-
bers should be written with a type suffix, such as 12int32. This is the
only way to specify large 64-bit numbers, because double-precision
floating-point numbers have a mantissa of 56 bits.

Constant arrays of uint8 can also be encoded in a compact way
using base64 inline data.

uint64 and int64 are not supported on platforms with tight mem-
ory constraints.

Examples
uint8(3)
3uint8

3uint8
3uint8

uint8([50:50:400])
1x8 uint8 array
50 100 150 200 250 44 94 144

@/base64 MmSWyPosXpA=
50

100
...
144

LME Reference — integers 311

int8([50:50:400])
1x8 int8 array
50 100 -106 -56 -6 44 94 -112

The base64 data above is obtained with the following expression:

base64encode(uint8([50:50:400]))

See also
double, single, char, logical, map2int

intmax

Largest integer.

Syntax
i = intmax
i = intmax(type)

Description
Without input argument, intmax gives the largest signed 32-bit inte-
ger. intmax(type) gives the largest integer of the type specified by
string type, which can be ’uint8’, ’uint16’, ’uint32’, ’uint64’,
’int8’, ’int16’, ’int32’, or ’int64’ (64-bit integers are not sup-
ported on all platforms). The result has the corresponding integer
type.

Examples
intmax
2147483647int32

intmax(’uint16’)
65535uint16

See also
intmin, realmax, flintmax, uint8 and related functions, map2int

intmin

Smallest integer.

Syntax
i = intmin
i = intmin(type)

312 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
Without input argument, intmin gives the smallest signed 32-bit inte-
ger. intmin(type) gives the largest integer of the type specified by
string type, which can be ’uint8’, ’uint16’, ’uint32’, ’uint64’,
’int8’, ’int16’, ’int32’, or ’int64’ (64-bit integers are not sup-
ported on all platforms). The result has the corresponding integer
type.

Examples
intmin
-2147483648int32

intmin(’uint16’)
0uint16

See also
intmax, realmin, uint8 and related functions, map2int

map2int

Mapping of a real interval to an integer type.

Syntax
B = map2int(A)
B = map2int(A, vmin, vmax)
B = map2int(A, vmin, vmax, type)

Description
map2int(A,vmin,vmax) converts number or array A to 8-bit unsigned
integers. Values between vmin and vmax in A are mapped linearly
to values 0 to 255. With a single input argument, the default input
interval is 0 to 1.

map2int(A,vmin,vmax,type) converts A to the specified type,
which can be any integer type given as a string: ’uint8’, ’uint16’,
’uint32’, ’uint64’, ’int8’, ’int16’, ’int32’, or ’int64’ (64-bit
integers are not supported on all platforms). The input interval is
mapped to its full range.

In all cases, input values outside the interval are clipped to the
minimum or maximum values.

Examples
map2int(-0.2:0.2:1.2)
1x5 uint8 array
0 0 51 102 153 204 255 255

LME Reference — non-linear numerical functions 313

map2int([1,3,7], 0, 10, ’uint16’)
1x3 uint16 array
6553 19660 45875

map2int([1,3,7], 0, 10, ’int16’)
1x3 int16 array
-26214 -13107 13107

See also
uint8 and related functions.

5.21 Non-Linear Numerical Functions

fminbnd

Minimum of a function.

Syntax
(x, y) = fminbnd(fun, x0)
(x, y) = fminbnd(fun, [xlow,xhigh])
(x, y) = fminbnd(..., options)
(x, y) = fminbnd(..., options, ...)
(x, y, didConverge) = fminbnd(...)

Description
fminbnd(fun,...) finds numerically a local minimum of function fun.
fun is either specified by its name or given as an anonymous or inline
function or a function reference. It has at least one input argument x,
and it returns one output argument, also a real number. fminbnd finds
the value x such that fun(x) is minimized.

Second argument tells where to search; it can be either a starting
point or a pair of values which must bracket the minimum.

The optional third argument may contain options. It is either the
empty array [] for default options, or the result of optimset.

Remaining input arguments of fminbnd, if any, are given as addi-
tional input arguments to function fun. They permit to parameterize
the function. For example fminbnd(’fun’,x0,[],2,5) calls fun as
fun(x,2,5) and minimizes its value with respect to x.

The first output argument of fminbnd is the value of x at optimum.
The second output argument, if it exists, is the value of fun(x) at op-
timum. The third output argument, if it exists, is set to true if fminbnd
has converged to an optimum, or to false if it has not; in that case,
other output arguments are set to the best value obtained. With one
or two output arguments, fminbnd throws an error if it does not con-
verge.

314 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
Minimum of a sine near 2, displayed with 15 digits:

fprintf(’%.15g\n’, fminbnd(@sin, 2));
4.712389014989218

To find the minimum of ce− sin between -1 and 10 with c = 0.1, the
expression is written as an inline function stored in variable fun:

fun = inline(’c*exp(x)-sin(x)’, ’x’, ’c’);

Then fminbnd is used, with the value of c passed as an additional
argument:

x = fminbnd(fun,[-1,10],[],0.1)
x =
1.2239

With an anonymous function, this becomes

c = 0.1;
fun = @(x) c*exp(x)-sin(x);
x = fminbnd(fun,[-1,10])
x =
1.2239

Attempt to find the minimum of an unbounded function:

(x,y,didConverge) = fminbnd(@exp,10)
x =
-inf

y =
0

didConverge =
false

See also
optimset, fminsearch, fzero, inline, operator @

fminsearch

Minimum of a function in R n̂.

Syntax
x = fminsearch(fun, x0)
x = fminsearch(..., options)
x = fminsearch(..., options, ...)
(x, y, didConverge) = fminsearch(...)

LME Reference — non-linear numerical functions 315

Description
fminsearch(fun,x0,...) finds numerically a local minimum of func-
tion fun. fun is either specified by its name or given as an anonymous
or inline function or a function reference. It has at least one input
argument x, a real scalar, vector or array, and it returns one output
argument, a scalar real number. fminsearch finds the value x such
that fun(x) is minimized, starting from point x0.

The optional third input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

Remaining input arguments of fminsearch, if any, are given as ad-
ditional input arguments to function fun. They permit to parameterize
the function. For example fminsearch(’fun’,x0,[],2,5) calls fun
as fun(x,2,5) and minimizes its value with respect to x.

The first output argument of fminsearch is the value of x at opti-
mum. The second output argument, if it exists, is the value of fun(x)
at optimum. The third output argument, if it exists, is set to true if
fminsearch has converged to an optimum, or to false if it has not; in
that case, other output arguments are set to the best value obtained.
With one or two output arguments, fminsearch throws an error if it
does not converge.

Algorithm
fminsearch implements the Nelder-Mead simplex method. It starts
from a polyhedron centered around x0 (the "simplex"). Then at each it-
eration, either vertex x_i with the maximum value fun(x_i) is moved
to decrease it with a reflexion-expansion, a reflexion, or a contraction;
or the simplex is shrinked around the vertex with minimum value. It-
erations stop when the simplex is smaller than the tolerance, or when
the maximum number of iterations or function evaluations is reached
(then an error is thrown).

Examples
Minimum of a sine near 2, displayed with 15 digits:

fprintf(’%.15g\n’, fminsearch(@sin, 2));
4.712388977408411

Maximum of e−
2y2y − 0.12 The function is defined as an anony-

mous function stored in variable fun:

fun = @(x,y) x.*exp(-(x.*y).̂ 2).*x.*y-0.1*x.̂ 2;

In Sysquake, the contour plot can be displayed with the following com-
mands:

[X,Y] = meshgrid(0:0.02:3, 0:0.02:3);
contour(feval(fun, X, Y), [0,3,0,3], 0.1:0.05:0.5);

316 Sysquake Remote ©1999-2016, Calerga Sàrl

The maximum is obtained by minimizing the opposite of the function,
rewritten to use as input a single variable in R2:

mfun = @(X) -(X(1)*exp(-(X(1)*X(2))̂ 2)*X(1)*X(2)-0.1*X(1)̂ 2);
fminsearch(mfun, [1, 2])
2.1444 0.3297

Here is another way to find this maximum, by calling fun from an
intermediate anonymous function:

fminsearch(@(X) -fun(X(1),X(2)), [1, 2])
2.1444 0.3297

For the same function with a constraint < 1, the objective function
can be modified to return +∞ for inputs outside the feasible region
(note that we can start on the constraint boundary, but starting from
the infeasible region would probably fail):

fminsearch(@(X) X(1) < 1 ? -fun(X(1),X(2)) : inf, [1, 2])
1 0.7071

See also
optimset, fminbnd, lsqnonlin, fsolve, inline, operator @

fsolve

Solve a system of nonlinear equations.

Syntax
x = fsolve(fun, x0)
x = fsolve(..., options)
x = fsolve(..., options, ...)
(x, y, didConverge) = fsolve(...)

Description
fsolve(fun,x0,...) finds numerically a zero of function fun. fun
is either specified by its name or given as an anonymous or inline
function or a function reference. It has at least one input argument
x, a real scalar, vector or array, and it returns one output argument
y whose size should match x. fsolve attempts to find the value x
such that fun(x) is zero, starting from point x0. Depending on the
existence of any solution and on the choice of x0, fsolve may fail to
find a zero.

The optional third input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

LME Reference — non-linear numerical functions 317

Remaining input arguments of fsolve, if any, are given as addi-
tional input arguments to function fun. They permit to parameterize
the function. For example fsolve(@fun,x0,[],2,5) finds the value
of x such that the result of fun(x,2,5) is zero.

The first output argument of fsolve is the value of x at zero. The
second output argument, if it exists, is the value of fun(x) at zero;
it should be a vector or array whose elements are zero, up to the
tolerance, unless fsolve cannot find it. The third output argument, if
it exists, is set to true if fsolve has converged to a solution, or to false
if it has not; in that case, other output arguments are set to the best
value obtained. With one or two output arguments, fsolve throws an
error if it does not converge.

Algorithm
fsolve minimizes the sum of squares of the vector elements returned
by fun using the Nelder-Mead simplex method of fminsearch.

Example
One of the zeros of x1̂ 2+x2̂ 2=10, x2=exp(x1):

[x, y, didConverge] = fsolve(@(x) [x(1)̂ 2+x(2)̂ 2-10; x(2)-exp(x(1))], [0; 0])
x =
-3.1620
0.0423

y =
-0.0000
-0.0000

didConverge =
true

See also
optimset, fminsearch, fzero, inline, operator @

fzero

Zero of a function.

Syntax
x = fzero(fun,x0)
x = fzero(fun,[xlow,xhigh])
x = fzero(...,options)
x = fzero(...,options,...)

318 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
fzero(fun,...) finds numerically a zero of function fun. fun is either
specified by its name or given as an anonymous or inline function or a
function reference. It has at least one input argument x, and it returns
one output argument, also a real number. fzero finds the value x such
that fun(x)==0, up to some tolerance.

Second argument tells where to search; it can be either a starting
point or a pair of values xlow and xhigh which must bracket the zero,
such that fun(xlow) and fun(xhigh) have opposite sign.

The optional third argument may contain options. It is either the
empty array [] for the default options, or the result of optimset.

Additional input arguments of fzero are given as additional input
arguments to the function specified by fun. They permit to parame-
terize the function.

Examples
Zero of a sine near 3, displayed with 15 digits:

fprintf(’%.15g\n’, fzero(@sin, 3));
3.141592653589793

To find the solution of e = c +
p
 between 0 and 100 with c = 10, a

function f whose zero gives the desired solution is written:

function y = f(x,c)
y = exp(x) - c - sqrt(x);

Then fsolve is used, with the value of c passed as an additional argu-
ment:

x = fzero(@f,[0,100],[],10)
x =
2.4479

f(x,10)
1.9984e-15

An anonymous function can be used to avoid passing 10 as an ad-
ditional argument, which can be error-prone since a dummy empty
option arguments has to be inserted.

x = fzero(@(x) f(x,10), [0,100])
x =
2.4479

See also
optimset, fminsearch, inline, operator @, roots

LME Reference — non-linear numerical functions 319

integral

Numerical integration.

Syntax
y = integral(fun, a, b)
y = integral(fun, a, b, options)

Description
integral(fun,a,b) integrates numerically function fun between a
and b. fun is either specified by its name or given as an anonymous or
inline function or a function reference. It has a single input argument
and a single output argument, both scalar real or complex.

Options can be provided with named arguments. The following op-
tions are accepted:

Name Default Meaning
AbsTol 1e-6 maximum absolute error
RelTol 1e-3 maximum relative error
Display false statistics display

Example

∫ 2

0
te−tdt

integral(@(t) t*exp(-t), 0, 2, AbsTol=1e-9)
0.5940

See also
sum, ode45, inline, operator @

lsqcurvefit

Least-square curve fitting.

Syntax
param = lsqcurvefit(fun, param0, x, y)
param = lsqcurvefit(..., options)
param = lsqcurvefit(..., options, ...)
(param, r, didConverge) = lsqcurvefit(...)

320 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
lsqcurvefit(fun,p0,x,y,...) finds numerically the parameters of
function fun such that it provides the best fit for the curve defined by
x and y in a least-square sense. fun is either specified by its name or
given as an anonymous or inline function or a function reference. It
has at least two input arguments: p, the parameter vector, and x, a
vector or array of input data; it returns one output argument, a vector
or array the same size as x and y. Its header could be

function y = f(param, x)

lsqcurvefit finds the value p which minimizes
sum((fun(p,x)-y).̂ 2), starting from parameters p0. All values are
real.

The optional fifth input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

Remaining input arguments of lsqcurvefit, if any, are given as
additional input arguments to function fun. They permit to parameter-
ize the function. For example lsqcurvefit(’fun’,p0,x,y,[],2,5)
calls fun as fun(p,x,2,5) and find the (local) least-square solution
with respect to p.

The first output argument of lsqcurvefit is the value of p at op-
timum. The second output argument, if it exists, is the value of the
cost function at optimum. The third output argument, if it exists, is set
to true if lsqcurvefit has converged to an optimum, or to false if it
has not; in that case, other output arguments are set to the best value
obtained. With one or two output arguments, lsqcurvefit throws an
error if it does not converge.

Algorithm
Like lsqnonlin, lsqcurvefit is based on the Nelder-Mead simplex
method.

Example
Find the best curve fit of y=a*sin(b*x+c) with respect to parameters
a, b and c, where x and y are given (see the example of lsqnonlin for
another way to solve the same problem).

% assume nominal parameter values a0=2, b0=3, c0=1
a0 = 2; b0 = 3; c0 = 1;
% reset the seed of rand and randn for reproducible results
rand(’s’, 0); randn(’s’, 0);
% create x and y, with noise
x0 = rand(1, 100);
x = x0 + 0.05 * randn(1, 100);
y = a0 * sin(b0 * x0 + c0) + 0.05 * randn(1, 100);

LME Reference — non-linear numerical functions 321

% find least-square curve fit, starting from 1, 1, 1
p0 = [1; 1; 1];
p_ls = lsqcurvefit(@(p, x) p(1) * sin(p(2) * x + p(3)), p0, x, y)
p_ls =

2.0060
2.8504
1.0836

In Sysquake, the solution can be displayed with

fplot(@(x) a0 * sin(b0 * x + c0), [0,1], ’r’);
plot(x, y, ’o’);
fplot(@(x) p_ls(1)*sin(p_ls(2)*x+p_ls(3)), [min(x), max(x)]);
legend(’Nominal\nSamples\nLS fit’, ’r_kok_’);

See also
optimset, lsqnonlin, inline, operator @

lsqnonlin

Nonlinear least-square solver.

Syntax
x = lsqnonlin(fun, x0)
x = lsqnonlin(..., options)
x = lsqnonlin(..., options, ...)
(x, y, didConverge) = lsqnonlin(...)

Description
lsqnonlin(fun,x0,...) finds numerically the value such that the
sum of squares of the output vector produced by fun is a local mini-
mum. fun is either specified by its name or given as an anonymous
or inline function or a function reference. It has at least one input
argument x, a real scalar, vector or array, and it returns one output
argument, a real vector or array. Its header could be

function y = f(x)

lsqnonlin finds the value x such that sum(fun(x(:)).̂ 2) is mini-
mized, starting from point x0.

The optional third input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

Remaining input arguments of lsqnonlin, if any, are given as ad-
ditional input arguments to function fun. They permit to parameterize
the function. For example lsqnonlin(’fun’,x0,[],2,5) calls fun as

322 Sysquake Remote ©1999-2016, Calerga Sàrl

fun(x,2,5) and find the (local) least-square solution with respect to
x.

The first output argument of lsqnonlin is the value of x at opti-
mum. The second output argument, if it exists, is the value of fun(x)
at optimum. The third output argument, if it exists, is set to true if
lsqnonlin has converged to an optimum, or to false if it has not; in
that case, other output arguments are set to the best value obtained.
With one or two output arguments, lsqnonlin throws an error if it
does not converge.

Algorithm
Like fminsearch, lsqnonlin is based on the Nelder-Mead simplex
method.

Example
Find the least-square solution of a*sin(b*x+c)-y with respect to pa-
rameters a, b and c, where x and y are given (see the example of
lsqcurvefit for another way to solve the same problem).

% assume nominal parameter values a0=2, b0=3, c0=1
a0 = 2; b0 = 3; c0 = 1;
% reset the seed of rand and randn for reproducible results
rand(’s’, 0); randn(’s’, 0);
% create x and y, with noise
x0 = rand(1, 100);
x = x0 + 0.05 * randn(1, 100);
y = a0 * sin(b0 * x0 + c0) + 0.05 * randn(1, 100);
% find least-square solution, starting from 1, 1, 1
p0 = [1; 1; 1];
p_ls = lsqnonlin(@(p) p(1) * sin(p(2) * x + p(3)) - y, p0)
p_ls =
2.0060
2.8504
1.0836

In Sysquake, the solution can be displayed with

fplot(@(x) a0 * sin(b0 * x + c0), [0,1], ’r’);
plot(x, y, ’o’);
fplot(@(x) p_ls(1)*sin(p_ls(2)*x+p_ls(3)), [min(x), max(x)]);
legend(’Nominal\nSamples\nLS fit’, ’r_kok_’);

See also
optimset, fminsearch, lsqcurvefit, inline, operator @

ode23 ode45

Ordinary differential equation integration.

LME Reference — non-linear numerical functions 323

Syntax
(t,y) = ode23(fun,[t0,tend],y0)
(t,y) = ode23(fun,[t0,tend],y0,options)
(t,y) = ode23(fun,[t0,tend],y0,options,...)
(t,y,te,ye,ie) = ode23(...)
(t,y) = ode45(fun,[t0,tend],y0)
(t,y) = ode45(fun,[t0,tend],y0,options)
(t,y) = ode45(fun,[t0,tend],y0,options,...)
(t,y,te,ye,ie) = ode45(...)

Description
ode23(fun,[t0,tend],y0) and ode45(fun,[t0,tend],y0) integrate
numerically an ordinary differential equation (ODE). Both functions are
based on a Runge-Kutta algorithm with adaptive time step; ode23 is
low-order and ode45 high-order. In most cases for non-stiff equations,
ode45 is the best method. The function to be integrated is either spec-
ified by its name or given as an anonymous or inline function or a
function reference. It should have at least two input arguments and
exactly one output argument:

function yp = f(t,y)

The function calculates the derivative yp of the state vector y at time
t.

Integration is performed over the time range specified by the sec-
ond argument [t0,tend], starting from the initial state y0. It may
stop before reaching tend if the integration step cannot be reduced
enough to obtain the required tolerance. If the function is continuous,
you can try to reduce MinStep in the options argument (see below).

The optional fourth argument may contain options. It is either the
empty array [] for the default options, or the result of odeset (the use
of a vector of option values is deprecated.)

Events generated by options Events or EventTime can be obtained
by three additional output arguments: (t,y,te,ye,ie)=... returns
event times in te, the corresponding states in ye and the correspond-
ing event identifiers in ie.

Additional input arguments of ode45 are given as additional input
arguments to the function specified by fun. They permit to parame-
terize the ODE.

Examples
Let us integrate the following ordinary differential equation (Van Der
Pol equation), parameterized by μ:

′′ = μ
�

1 − 2
�

′ −

324 Sysquake Remote ©1999-2016, Calerga Sàrl

0 20

-2

0

2

Van der Pol equation, mu=1

Figure 5.1 Van der Pol equation with μ = 1 integrated with ode45

Let y1 = and y2 = ′; their derivatives are

y′1 = y2

y′2 = μ
�

1 − y21
�

y2 − y1

and can be computed by the following function:

function yp = f(t, y, mu)
yp = [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)];

The following ode45 call integrates the Van Der Pol equation from 0 to
10 with the default options, starting from (0) = 2 and ′(0) = 0, with
μ = 1 (see Fig. 5.1):

(t, y) = ode45(@f, [0,10], [2;0], [], 1);

The same result can be obtained with an anonymous function:

mu=1;
(t, y) = ode45(@(t,y) [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)],
[0,10], [2;0]);

The plot command expects traces along the second dimension; con-
sequently, the result of ode45 should be transposed.

plot(t’, y’);

LME Reference — non-linear numerical functions 325

See also

odeset, integral, inline, operator @, expm

odeset

Options for ordinary differential equation integration.

Syntax

options = odeset
options = odeset(name1=value1, ...)
options = odeset(name1, value1, ...)
options = odeset(options0, name1=value1, ...)
options = odeset(options0, name1, value1, ...)

Description

odeset(name1,value1,...) creates the option argument used by
ode23 and ode45. Options are specified with name/value pairs, where
the name is a string which must match exactly the names in the table
below. Case is significant. Alternatively, options can be given with
named arguments. Options which are not specified have a default
value. The result is a structure whose fields correspond to each op-
tion. Without any input argument, odeset creates a structure with all
the default options. Note that ode23 and ode45 also interpret the lack
of an option argument, or the empty array [], as a request to use the
default values. Options can also be passed directly to ode23 or ode45
as named arguments.

When its first input argument is a structure, odeset adds or
changes fields which correspond to the name/value pairs which
follow.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

326 Sysquake Remote ©1999-2016, Calerga Sàrl

Name Default Meaning
AbsTol 1e-6 maximum absolute error
Events [] (none) state-based event function
EventTime [] (none) time-based event function
InitialStep [] (10*MinStep) initial time step
MaxStep [] (time range/10) maximum time step
MinStep [] (time range/1e6) minimum time step
NormControl false error control on state norm
OnEvent [] (none) event function
OutputFcn [] (none) output function
Past false provide past times and states
PreArg {} list of prepended input arguments
Refine [] (1, 4 for ode45) refinement factor
RelTol 1e-3 maximum relative error
Stats false statistics display

Time steps and output
Several options control how the time step is tuned during the numeric
integration. Error is calculated separately on each element of y if
NormControl is false, or on norm(y) if it is true; time steps are chosen
so that it remains under AbsTol or RelTol times the state, whichever
is larger. If this cannot be achieved, for instance if the system is stiff
and requires an integration step smaller than MinStep, integration is
aborted.

’Refine’ specifies how many points are added to the result for
each integration step. When it is larger than 1, additional points are
interpolated, which is much faster than reducing MaxStep.

The output function OutputFcn, if defined, is called after each step.
It is a function name in a string, a function reference, or an anonymous
or inline function, which can be defined as

function stop = outfun(tn, yn)

where tn is the time of the new samples, yn their values, and stop
a logical value which is false to continue integrating or true to stop.
The number of new samples is given by the value of Refine; when
multiple values are provided, tn is a row vector and yn is a matrix
whose columns are the corresponding states. The output function can
be used for incremental plots, for animations, or for managing large
amounts of output data without storing them in variables.

Events
Events are additional time steps at controlled time, to change instan-
taneously the states, and to base the termination condition on the
states. Time instants where events occur are either given explicitly

LME Reference — non-linear numerical functions 327

by EventTime, or implicitly by Events. There can be multiple streams
of events, which are checked independently and are identified by a
positive integer for Events, or a negative integer for EventTime. For
instance, for a ball which bounces between several walls, the inter-
section between each wall and the ball trajectory would be a different
event stream.

For events which occur at regular times, EventTime is an n-by-two
matrix: for each row, the first column gives the time step ts, and the
second column gives the offset to. Non-repeating events are specified
with an infinite time step ts. Events occur at time t=to+k*ts, where
k is an integer.

When event time is varying, EventTime is a function which can be
defined as

function eventTime = eventtimefun(t, y, ...)

where t is the current time, y the current state, and the ellipsis stand
for additional arguments passed to ode*. The function returns a (col-
umn) vector whose elements are the times where the next event oc-
curs. In both cases, each row corresponds to a different event stream.

For events which are based on the state, the value of a function
which depends on the time and the states is checked; the event occurs
when its sign changes. Events is a function which can be defined as

function (value, isterminal, direction) ...
= eventsfun(t, y, ...)

Input arguments are the same as for EventTime. Output arguments
are (column) vectors where each element i corresponds to an event
stream. An event occurs when value(i) crosses zero, in either
direction if direction(i)==0, from negative to nonnegative if
direction(i)>0, or from positive to nonpositive if direction(i)<0.
The event terminates integration if isterminal(i) is true. The
Events function is evaluated for each state obtained by integration;
intermediate time steps obtained by interpolation when Refine is
larger than 1 are not considered. When an event occurs, the
integration time step is reset to the initial value, and new events are
disabled during the next integration step to avoid shattering.
MaxStep should be used if events are missed when the result of
Events is not monotonous between events.

When an event occurs, function OnEvent is called if it exists. It can
be defined as

function yn = onevent(t, y, i, ...)

where i identifies the event stream (positive for events produced by
Events or negative for events produced by EventTime); and the out-
put yn is the new value of the state, immediately after the event.

328 Sysquake Remote ©1999-2016, Calerga Sàrl

The primary goal of ode* functions is to integrate states. However,
there are systems where some states are constant between events,
and are changed only when an event occurs. For instance, in a relay
with hysteresis, the output is constant except when the input over-
shoots some value. In the general case, ni states are integrated and
n-ni states are kept constant between events. The total number of
states n is given by the length of the initial state vector y0, and the
number of integrated states ni is given by the size of the output of the
integrated function. Function OnEvent can produce a vector of size n
to replace all the states, of size n-ni to replace the non-integrated
states, or empty to replace no state (this can be used to display re-
sults or to store them in a file, for instance).

Event times are computed after an integration step has been ac-
cepted. If an event occurs before the end of the integration step, the
step is shortened; event information is stored in the output arguments
of ode* te, ie and ye; and the OnEvent function is called. The output
arguments t and y of ode* contain two rows with the same time and
the state right before the event and right after it. The time step used
for integration is not modified by events.

Additional arguments
Past is a logical value which, if it is true, specifies that the time and
state values computed until now (what will eventually be the result of
ode23 or ode45) are passed as additional input arguments to functions
called during intergration. This is especially useful for delay differen-
tial equations (DDE), where the state at some time point in the past
can be interpolated from the integration results accumulated until now
with interp1. Assuming no additional parameters or PreArg (see be-
low), functions must be defined as

function yp = f(t,y,tpast,ypast)
function stop = outfun(tn,yn,tpast,ypast)
function eventTime = eventtimefun(t,y,tpast,ypast)
function (value, isterminal, direction) ...

= eventsfun(t,y,tpast,ypast)
function yn = onevent(t,y,tpast,ypast,i)

PreArg is a list of additional input arguments for all functions called
during integration; they are placed before normal arguments. For ex-
ample, if its value is {1,’abc’}, the integrated function is called with
fun(1,’abc’,t,y), the output function as outfun(1,’abc’,tn,yn),
and so on.

Examples
Default options
odeset
AbsTol: 1e-6

LME Reference — non-linear numerical functions 329

0 5

-2

0

2

Figure 5.2 Van der Pol equation with Refine set to 1 and 4

Events: []
EventTime: []
InitialStep: []
MaxStep: []
MinStep: []
NormControl: false
OnEvent: []
OutputFcn: []
PreArg: {}
Refine: []
RelTol: 1e-3
Stats: false

Option ’refine’

ode45 is typically able to use large time steps to achieve the requested
tolerance. When plotting the output, however, interpolating it with
straight lines produces visual artifacts. This is why ode45 inserts 3
interpolated points for each calculated point, based on the fifth-order
approximation calculated for the integration (Refine is 4 by default).
In the following code, curves with and without interpolation are com-
pared (see Fig. 5.2). Note that the numbers of evaluations of the func-
tion being integrated are the same.

mu = 1;
fun = @(t,y) [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)];
(t, y) = ode45(fun, [0,5], [2;0], ...

odeset(’Refine’,1,’Stats’,true));
Number of function evaluations: 289

330 Sysquake Remote ©1999-2016, Calerga Sàrl

Successful steps: 42
Failed steps (error too large): 6

size(y)
43 2

(ti, yi) = ode45(fun, [0,5], [2;0], ...
odeset(’Stats’,true));

Number of function evaluations: 289
Successful steps: 42
Failed steps (error too large): 6

size(yi)
169 2

plot(ti’, yi’, ’g’);
plot(t’, y’);

State-based events
For simulating a ball bouncing on the ground, an event is generated
every time the ball hits the ground, and its speed is changed instan-
taneously. Let y(1) be the height of the ball above the ground, and
y(2) its speed (SI units are used). The state-space model is

y’ = [y(2); -9.81];

An event occurs when the ball hits the ground:

value = y(1);
isterminal = false;
direction = -1;

When the event occurs, a new state is computed:

yn = [0; -damping*y(2)];

To integrate this, the following functions are defined:

function yp = ballfun(t, y, damping)
yp = [y(2); -9.81];

function (v, te, d) = ballevents(t, y, damping)
v = y(1); // event when the height becomes negative
te = false; // do not terminate
d = -1; // only for negative speeds

function yn = ballonevent(t, y, i, damping)
yn = [0; -damping*y(2)];

Ball state is integrated during 5 s (see Fig. 5.3) with

opt = odeset(’Events’, @ballevents, ...
’OnEvent’, @ballonevent);

(t, y) = ode45(@ballfun, [0, 5], [2; 0], opt, 1);
plot(t’, y’);

LME Reference — non-linear numerical functions 331

0 5

-5

0

5

Bouncing ball integrated with events

Figure 5.3 Bouncing ball integrated with events

Time events with discontinuous function
If the function being integrated has discontinuities at known time in-
stants, option EventTime can be used to insure an accurate switching
time. Consider a first-order filter with input (t), where (t) = 0 for
t < 1 and (t) = 1 for t ≥ 1. The following function is defined for the
state derivative:

function yp = filterfun(t, y)
yp = -y + (t <= 1 ? 0 : 1);

A single time event is generated at t = 1:

opt = odeset(’EventTime’, [inf, 1]);
(t, y) = ode45(@filterfun, [0, 5], 0, opt);
plot(t’, y’);

Function filterfun is integrated in the normal way until t = 1 inclu-
sive, with = 0. This is why the conditional expression in filterfun
is less than or equal to and not less than. Then the event occurs, and
integration continues from t = 1 + ε with = 0.

Non-integrated state
For the last example, we will consider a system made of an integrator
and a relay with hysteresis in a loop. Let y(1) be the output of the
integrator and y(2) the output of the relay. Only y(1) is integrated:

yi’ = y(2);

332 Sysquake Remote ©1999-2016, Calerga Sàrl

0 5
-1

0

1
Relay with hysteresis

Figure 5.4 Relay with hysteresis integrated with events

An event occurs when the integrator is larger or smaller than the hys-
teresis:

value = y(1) - y(2);
isTerminal = false;
direction = sign(y(2));

When the event occurs, a new value is computed for the 2nd state:

yn = -y(2);

To integrate this, the following functions are defined:

function yp = relayfun(t, y)
yp = y(2);

function (v, te, d) = relayevents(t, y)
v = y(1) - y(2);
te = false;
d = sign(y(2));

function yn = relayonevent(t, y, i)
yn = -y(2);

The initial state is [0;1]; 0 for the integrator, and 1 for the output of
the relay. State is integrated during 5 s (see Fig. 5.4) with

(t, y) = ode45(@relayfun, [0, 5], [0; 1], ...
odeset(’Events’, @relayevents, ’OnEvent’, @relayonevent));
plot(t’, y’);

LME Reference — non-linear numerical functions 333

Delay differential equation
A system whose Laplace transform is Y(s)/U(s) = e−ds/(s2 + s) (first
order + integrator + delay d) is simulated with unit negative feedback.
The reference signal is 1 for t > 0. First, the open-loop system is con-
verted from transfer function to state-space, such that ′(t) = A(t) +
B(t) and y(t) = C(t − d). The closed-loop state-space model is ob-
tained by setting (t) = 1− y(t), which gives ′(t) = A(t)+BC(t−d).

Delayed state is interpolated from past results with interp1. Note
that values for t < 0 (extrapolated) are set to 0, and that values more
recent than the last result are interpolated with the state passed to f
for current t.

(A,B,C) = tf2ss(1,[1,1,0]);
d = 0.1;
x0 = zeros(length(A),1);
tmax = 10;
f = @(t,x,tpast,xpast) ...

A*x+B*(1-C*interp1([tpast;t],[xpast;x.’],t-d,’1’,0).’);
(t,x) = ode45(f, [0,tmax], x0, odeset(’Past’,true));

Output y can be computed from the state:

y = C * interp1(t,x,t-d,’1’,0).’;

See also
ode23, ode45, optimset, interp1

optimset

Options for minimization and zero finding.

Syntax
options = optimset
options = optimset(name1=value1, ...)
options = optimset(name1, value1, ...)
options = optimset(options0, name1=value1, ...)
options = optimset(options0, name1, value1, ...)

Description
optimset(name1,value1,...) creates the option argument used by
fminbnd, fminsearch, fzero, fsolve, and other optimization func-
tions. Options are specified with name/value pairs, where the name
is a string which must match exactly the names in the table below.
Case is significant. Alternatively, options can be given with named ar-
guments. Options which are not specified have a default value. The

334 Sysquake Remote ©1999-2016, Calerga Sàrl

result is a structure whose fields correspond to each option. Without
any input argument, optimset creates a structure with all the default
options. Note that fminbnd, fminsearch, and fzero also interpret the
lack of an option argument, or the empty array [], as a request to use
the default values. Options can also be passed directly to fminbnd and
other similar functions as named arguments.

When its first input argument is a structure, optimset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
Display false detailed display
MaxFunEvals 1000 maximum number of evaluations
MaxIter 500 maximum number of iterations
TolX [] maximum relative error

The default value of TolX is eps for fzero and sqrt(eps) for
fminbnd and fminsearch.

Examples
Default options:

optimset
Display: false
MaxFunEvals: 1000
MaxIter: 500
TolX: []

Display of the steps performed to find the zero of cos between 1 and
2:

fzero(@cos, [1,2], optimset(’Display’,true))
Checking lower bound
Checking upper bound
Inverse quadratic interpolation 2,1.5649,1
Inverse quadratic interpolation 1.5649,1.571,2
Inverse quadratic interpolation 1.571,1.5708,1.5649
Inverse quadratic interpolation 1.5708,1.5708,1.571
Inverse quadratic interpolation 1.5708,1.5708,1.571

ans =
1.5708

See also
fzero, fminbnd, fminsearch, lsqnonlin, lsqcurvefit

LME Reference — strings 335

quad

Numerical integration.

Syntax
y = quad(fun, a, b)
y = quad(fun, a, b, tol)
y = quad(fun, a, b, tol, trace)
y = quad(fun, a, b, tol, trace, ...)

Description
quad(fun,a,b) integrates numerically real function fun between a
and b. fun is either specified by its name or given as an anonymous
or inline function or a function reference.

The optional fourth argument is the requested relative tolerance of
the result. It is either a positive real scalar number or the empty ma-
trix (or missing argument) for the default value, which is sqrt(eps).
The optional fifth argument, if true or nonzero, makes quad displays
information at each step.

Additional input arguments of quad are given as additional input
arguments to function fun. They permit to parameterize the function.

Example

∫ 2

0
te−tdt

quad(@(t) t*exp(-t), 0, 2)
0.5940

Remark
Function quad is obsolete and should be replaced with integral,
which supports named options and complex numbers.

See also
integral, operator @

5.22 String Functions

base32decode

Decode base32-encoded data.

336 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
strb = base32decode(strt)

Description
base32decode(strt) decodes the contents of string strt which rep-
resents data encoded with base32. Characters which are not ’A’-’Z’ or
’2’-’7’ are ignored. Decoding stops at the end of the string or when ’=’
is reached.

See also
base32encode, base64decode

base32encode

Encode data using base32.

Syntax
strt = base32encode(strb)

Description
base32encode(strb) encodes the contents of string strb which rep-
resents binary data. The result contains only characters ’A’-’Z’ and
’2’-’7’, and linefeed every 56 characters. It is suitable for transmission
or storage on media which accept only uppercase letters and digits,
without ’0’ or ’1’ easy to misinterpret as letters.

Each character of encoded data represents 5 bits of binary data;
i.e. one needs eight characters for five bytes. The five bits represent
32 different values, encoded with the characters ’A’ to ’Z’ and ’2’ to
’7’ in this order. When the binary data have a length which is not a
multiple of 5, encoded data are padded with 2, 3, 5 or 6 characters ’=’
to have a multiple of 8.

Base32 encoding is an Internet standard described in RFC 4648.

Example
s = base32encode(char(0:10))
s =
AAAQEAYEAUDAOCAJBI======

d = double(base32decode(s))
d =
0 1 2 3 4 5 6 7 8 9 10

See also
base32decode, base64encode

LME Reference — strings 337

base64decode

Decode base64-encoded data.

Syntax
strb = base64decode(strt)

Description
base64decode(strt) decodes the contents of string strt which rep-
resents data encoded with base64. Characters which are not ’A’-’Z’,
’a’-’z’, ’0’-’9’, ’+’, ’/’, or ’=’ are ignored. Decoding stops at the end of
the string or when ’=’ is reached.

See also
base64encode, base32decode

base64encode

Encode data using base64.

Syntax
strt = base64encode(strb)

Description
base64encode(strb) encodes the contents of string strb which rep-
resents binary data. The result contains only characters ’A’-’Z’, ’a’-’z’,
’0’-’9’, ’+’, ’/’, and ’=’; and linefeed every 60 characters. It is suitable
for transmission or storage on media which accept only text.

Each character of encoded data represents 6 bits of binary data;
i.e. one needs four characters for three bytes. The six bits represent
64 different values, encoded with the characters ’A’ to ’Z’, ’a’ to ’z’,
’0’ to ’9’, ’+’, and ’/’ in this order. When the binary data have a length
which is not a multiple of 3, encoded data are padded with one or two
characters ’=’ to have a multiple of 4.

Base64 encoding is an Internet standard described in RFC 2045.

Example
s = base64encode(char(0:10))
s =
AAECAwQFBgcICQo=

double(base64decode(s))
0 1 2 3 4 5 6 7 8 9 10

338 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
base64decode, base32encode

char

Convert an array to a character array (string).

Syntax
s = char(A)
S = char(s1, s2, ...)

Description
char(A) converts the elements of matrix A to characters, resulting in
a string of the same size. Characters are stored in unsigned 16-bit
words. The shape of A is preserved. Even if most functions ignore the
string shape, you can force a row vector with char(A(:).’).

char(s1,s2,...) concatenates vertically the arrays given as ar-
guments to produce a string matrix. If the strings do not have the
same number of columns, blanks are added to the right.

Examples
char(65:70)
ABCDEF

char([65, 66; 67, 68](:).’)
ABCD

char(’ab’,’cde’)
ab
cde

char(’abc’,[’de’;’fg’])
abc
de
fg

See also
setstr, uint16, operator :, operator .’, ischar, logical, double,
single

deblank

Remove trailing blank characters from a string.

Syntax
s2 = deblank(s1)

LME Reference — strings 339

Description
deblank(s1) removes the trailing blank characters from string s1.
Blank characters are spaces (code 32), tabulators (code 9), carriage
returns (code 13), line feeds (code 10), and null characters (code 0).

Example
double(’ \tAB CD\r\n\0’)
32 9 65 66 32 32 67 68 13 10 0

double(deblank(’ \tAB CD\n\r\0’)))
32 9 65 66 32 32 67 68

See also
strtrim

hmac

HMAC authentication hash.

Syntax
hash = hmac(hashtype, key, data)
hash = hmac(hashtype, key, data, type=t)

Description
hmac(hashtype,key,data) calculates the authentication hash of data
with secret key key and the method specified by hashtype: ’md5’,
’sha1’, ’sha224’, ’sha256’, ’sha384’, or ’sha512’. Both argu-
ments data and key can be strings (char arrays) which are converted
to UTF-8, or int8 or uint8 arrays. The key can be up to 64 bytes; longer
keys are truncated. The result is a string of hexadecimal digits whose
length depends on the hash method, from 32 for HMAC-MD5 to 128
for HMAC-SHA512.

Named argument type can change the output type. It can be
’uint8’ for an uint8 array of 16 or 20 bytes (raw HMAC-MD5 or HMAC-
SHA1 hash result), ’hex’ for its representation as a string of 32 or 40
hexadecimal digits (default), or base64 for its conversion to Base64 in
a string of 24 or 28 characters.

HMAC is an Internet standard described in RFC 2104.

Examples
HMAC-MD5 of ’Authenticated message’ using secret key ’secret’:

hmac(’md5’, ’secret’, ’Authenticated message’)
4f557b1f67bc4790e6e9568e2f458cf0

340 Sysquake Remote ©1999-2016, Calerga Sàrl

Same result computed explicitly, with the notations of RFC 2104: B
is the block length, L is the hash length (16 for HMAC-MD5 or 20 for
HMAC-SHA1), K is the key padded with zeros to have size B, and H is
the hash function, defined here to produce a uint8 hash instead of an
hexadecimal string like the LME functions md5 or sha1.

B = 64;
L = 16;
H = @(a) uint8(sscanf(md5(a), ’%2x’)’);
key = uint8(’secret’);
data = uint8(’Authenticated message’);
K = [key, zeros(1, B - length(key), ’uint8’)];
hash = H([bitxor(K, 0x5cuint8), H([bitxor(K, 0x36uint8), data])]);
sprintf(’%.2x’, hash)

Simple implementation of the HOTP and TOTP password algorithms
(RFC 4226 and 6238) often used for two-factor authentication, with
their default parameter values. The password is assumed to be
base32-encoded.

function n = hotp(pass, cnt)
k = uint8(base32decode(pass));
c = bwrite(cnt, ’uint64;b’);
// or c=bwrite([floor(c/2̂ 32),mod(c,2̂ 32)],’uint32;b’);
hs = hmac(’sha1’, k, c, type=’uint8’);
ob = mod(hs(20), 16);
dt = mod(sread(hs(ob + (1:4)), [], ’uint32;b’), 2̂ 31);
n = mod(dt, 1e6);

function n = totp(pass)
t = floor(posixtime / 30);
n = hotp(pass, t);

Simple implementation of the PBKDF2 key stretching algorithm (RFC
2898):

function dk = pbkdf2_hmac(hashtype, p, salt, c, dkLen)
hLen = length(hmac(hashtype, ’’, ’’)) / 2;
dk = uint8([]);
for i = 1:ceil(dkLen / hLen)
u = hmac(hashtype, p, [salt, bwrite(i, ’uint32;b’)], type=’uint8’);
f = u;
for j = 2:c
u = hmac(hashtype, p, u, type=’uint8’);
f = bitxor(f, u);

end
dk = [dk, f];

end
dk = dk(1:dkLen);

Test of PBKDF2-HMAC-SHA1 with values provided in RFC 6070 (output
format is switched to hexadecimal for easier comparison):

LME Reference — strings 341

format int x
pbkdf2_hmac_sha1(’sha1’, ’password’, ’salt’, 4096, 20)
0x4b 0x0 0x79 0x1 0xb7 0x65 0x48 0x9a 0xbe 0xad
0x49 0xd9 0x26 0xf7 0x21 0xd0 0x65 0xa4 0x29 0xc1

format

See also
md5, sha1

ischar

Test for a string object.

Syntax
b = ischar(obj)

Description
ischar(obj) is true if the object obj is a character string, false other-
wise. Strings can have more than one line.

Examples
ischar(’abc’)
true

ischar(0)
false

ischar([])
false

ischar(’’)
true

ischar([’abc’;’def’])
true

See also
isletter, isspace, isnumeric, islogical, isinteger, islist,
isstruct, setstr, char

isdigit

Test for decimal digit characters.

Syntax
b = isdigit(s)

342 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
For each character of string s, isdigit(s) is true if it is a digit (’0’ to
’9’) and false otherwise. The result is a logical array with the same
size as the input argument.

Examples
isdigit(’a123bAB12* ’)
F T T T F F F T T F F

See also
isletter, isspace, lower, upper, ischar

isletter

Test for letter characters.

Syntax
b = isletter(s)

Description
For each character of string s, isletter(s) is true if it is an ASCII
letter (a-z or A-Z) and false otherwise. The result is a logical array with
the same size as the input argument.

isletter gives false for letters outside the 7-bit ASCII range;
unicodeclass should be used for Unicode-aware tests.

Examples
isletter(’abAB12*’)
T T T T F F F F

See also
isdigit, isspace, lower, upper, ischar, unicodeclass

isspace

Test for space characters.

Syntax
b = isspace(s)

LME Reference — strings 343

Description
For each character of string s, isspace(s) is true if it is a space, a
tabulator, a carriage return or a line feed, and false otherwise. The
result is a logical array with the same size as the input argument.

Example
isspace(’a\tb c\nd’)
F T F T F T F

See also
isletter, isdigit, ischar

latex2mathml

Convert LaTeX equation to MathML.

Syntax
str = latex2mathml(tex)
str = latex2mathml(tex, mml1, mml2, ...)
str = latex2mathml(..., displaymath=b)

Description
latex2mathml(tex) converts LaTeX equation in string tex to MathML.
LaTeX equations may be enclosed between dollars or double-dollars,
but this is not mandatory. In string literals, backslash and tick charac-
ters must be escaped as \\ and \’ respectively.

With additional arguments, which must be strings containing
MathML, parameters #1, #2, ... in argument tex are converted to
argument i+1.

The following LaTeX features are supported:

– variables (each letter is a separate variable)

– numbers (sequences of digit and dot characters)

– superscripts and subscripts, prime (single or multiple)

– braces used to group subexpressions or specify arguments with
more than one token

– operators (+, -, comma, semicolon, etc.)

344 Sysquake Remote ©1999-2016, Calerga Sàrl

– control sequences for character definitions, with greek
characters in lower case (\alpha, ..., \omega, \varepsilon,
\vartheta, \varphi) and upper case (\Alpha, ..., \Omega),
arrows (\leftarrow or \gets, \rightarrow or \to, \uparrow,
\downarrow, \leftrightarrow, \updownarrow, \Leftarrow,
\Rightarrow, \Uparrow, \Downarrow, \Leftrightarrow,
\Updownarrow, nwarrow, nearrow, searrow, swarrow, mapsto,
hookleftarrow, hookrightarrow, Longleftrightarrow,
longmapsto), and symbols (\|, \ell, \partial, \infty,
\emptyset, \nabla, \perp, \angle, \triangle, \backslash,
\forall, \exists, \flat, \natural, \sharp, \pm, \mp, \cdot,
\times, \star, \diamond, \cap, \cup, etc.)

– \not followed by comparison operator, such as \not< or
\not\approx

– control sequences for function definitions (\arccos, \arcsin,
\arctan, \arg, \cos, \cosh, \cot, \coth, \csc, \deg, \det, \dim,
\exp, \gcd, \hom, \inf, \injlim, \ker, \lg, \liminf, \limsup,
\ln, \log, \max, \min, \Pr, \projlim, \sec, \sin, \sinh, \sup,
\tan, \tanh)

– accents (\hat, \check, \tilde, \acute, grave, \dot, \ddot,
\dddot, breve, \bar, \vec, \overline, \widehat, \widetilde,
\underline)

– \left and \right

– fractions with \frac or \over

– roots with \sqrt (without optional radix) or \root...\of...

– \atop

– large operators (\bigcap, \bigcup, \bigodot, \bigoplus,
\bigotimes, \bigsqcup, \biguplus, \bigvee, \bigwedge,
\coprod, \prod, and \sum with implicit \limits for limits below
and above the symbol; and \int, \iint, \iiint, \iiiint,
\oint, and \oiint with implicit \nolimits for limits to the right
of the symbol)

– \limits and \nolimits for functions and large operators

– matrices with \matrix, \pmatrix, \bmatrix, \Bmatrix,
\vmatrix, \Vmatrix, \begin{array}{...}.../\end{array};
values are separated with & and rows with \cr or \\

– font selection with \rm for roman, \bf for bold face, and \mit for
math italic

LME Reference — strings 345

– color with \color{c} where c is black, red, green, blue, cyan,
magenta, yellow, white, orange, violet, purple, brown,
darkgray, gray, or lightgray

– hidden element with \phantom

– text with \hbox{...} (brace contents is taken verbatim)

– horizontal spaces with \, \: \: \; \quad \qquad and \!

LaTeX features not enumerated above, such as definitions and nested
text and equations, are not supported.

latex2mathml has also features which are missing in LaTeX. Uni-
code is used for both LaTeX input and MathML output. Some seman-
tics is recognized to build subexpressions which are revealed in the
resulting MathML. For instance, in x+(y+z)w, (y+z) is a subpexpres-
sions; so is (y+z)w with an implicit multiplication (resulting in the
<mo>⁢<mo> MathML operator), used as the second operand of
the addition. LaTeX code (like mathematical notation) is sometimes
ambiguous and is not always converted to the expected MathML (e.g.
a(b+c) is converted to a function call while the same notation could
mean the product of a and b+c), but this should not have any visible
effect when the MathML is typeset.

Operators can be used as freely as in LaTeX. Missing operands re-
sult in <none/>, as if there were an empty pair of braces {}. Consec-
utive terms are joined with implicit multiplications.

Named argument displaymath specifies whether the vertical
space is tight, like in inline equations surrounded by text (false), or
unconstrained, as rendered in separate lines (true). It affects the
position of some limits. The default is true.

Examples
latex2mathml(’xŷ 2’)
<mrow><mi>x</mi><mo>⁢</mo><msup><mi>y</mi><mn>2</mn></msup></mrow>

mml = latex2mathml(’\\frac{x_3+5}{x_1+x_2}’);
mml = latex2mathml(’$\\root n \\of x$’);
mml = latex2mathml(’\\pmatrix{x & \\sqrt y \\cr \\sin\\phi & \\hat\\ell}’);
mml = latex2mathml(’\\dot x = #1’, mathml([1,2;3,0], false));
mml = latex2mathml(’\\lim_{x \\rightarrow 0} f(x)’, displaymath=true)
mml = latex2mathml(’\\lim_{x \\rightarrow 0} f(x)’, displaymath=false)

See also
mathml

lower

Convert all uppercase letters to lowercase.

346 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
s2 = lower(s1)

Description
lower(s1) converts all the uppercase letters of string s1 to lowercase,
according to the Unicode Character Database.

Example
lower(’abcABC123’)
abcabc123

See also
upper, isletter

mathml

Conversion to MathML.

Syntax
str = mathml(x)
str = mathml(x, false)
str = mathml(..., Format=f, NPrec=n)

Description
mathml(x) converts its argument x to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a second
input argument equal to the logical value false can be specified to
suppress <math>.

By default, mathml converts numbers like format ’%g’ of sprintf.
Named arguments can override them: format is a single letter format
recognized by sprintf and NPrec is the precision (number of deci-
mals).

Example
mathml(pi)
<math>
<mn>3.1416</mn>
</math>

mathml(1e-6, Format=’e’, NPrec=2)
<math>
<mrow><mn>1.00</mn><mo>·</mo><msup><mn>10</mn><mn>-6</mn></msup></mrow>
</math>

LME Reference — strings 347

See also
mathmlpoly, latex2mathml, sprintf

mathmlpoly

Conversion of a polynomial to MathML.

Syntax
str = mathmlpoly(pol)
str = mathmlpoly(pol, var)
str = mathmlpoly(..., power)
str = mathmlpoly(..., false)
str = mathmlpoly(..., Format=f, NPrec=n)

Description
mathmlpoly(coef) converts polynomial coefficients pol to MathML
presentation, returned as a string. The polynomial is given as a vec-
tor of coefficients, with the highest power first; e.g., 2 + 2 − 3 is
represented by [1,2,-3].

By default, the name of the variable is x. An optional second
argument can specify another name as a string, such as ’y’, or a
MathML fragment beginning with a less-than character, such as
’<mn>3</mn>’.

Powers can be specified explicitly with an additional argument, a
vector which must have the same length as the polynomial coeffi-
cients. Negative and fractional numbers are allowed; the imaginary
part, if any, is ignored.

By default, the MathML top-level element is <math>. If the re-
sult is to be used as a MathML subelement of a larger equation, an
additional input argument (the last unnamed argument) equal to the
logical value false can be specified to suppress <math>.

Named arguments format and NPrec have the same effect as with
mathml.

Examples
Simple third-order polynomial:

mathmlpoly([1,2,5,3])

Polynomial with negative powers of variable q:

c = [1, 2.3, 4.5, -2];
mathmlpoly(c, ’q’, -(0:numel(c)-1))

Rational fraction:

str = sprintf(’<mfrac>%s%s</mfrac>’,
mathmlpoly(num, false),
mathmlpoly(den, false));

348 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
mathml

md5

Calculate MD5 digest.

Syntax
digest = md5(strb)
digest = md5(fd)
digest = md5(..., type=t)

Description
md5(strb) calculates the MD5 digest of strb which represents binary
data. strb can be a string (only the least-significant byte of each
character is considered) or an array of bytes of class uint8 or int8.
The result is a string of 32 hexadecimal digits. It is believed to be hard
to create the input to get a given digest, or to create two inputs with
the same digest.

md5(fd) calculates the MD5 digest of the bytes read from file de-
scriptor fd until the end of the file. The file is left open.

Named argument type can change the output type. It can be
’uint8’ for an uint8 array of 16 bytes (raw MD5 hash result), ’hex’
for its representation as a string of 32 hexadecimal digits (default), or
base64 for its conversion to Base64 in a string of 24 characters.

MD5 digest is an Internet standard described in RFC 1321.

Examples
MD5 of the three characters ’a’, ’b’, and ’c’:

md5(’abc’)
900150983cd24fb0d6963f7d28e17f72

This can be compared to the result of the command tool md5 found on
many unix systems:

$ echo -n abc | md5
900150983cd24fb0d6963f7d28e17f72

The following statements calculate the digest of the file ’somefile’:

fd = fopen(’somefile’);
digest = md5(fd);
fclose(fd);

LME Reference — strings 349

See also
sha1, hmac

regexp regexpi

Regular expression match.

Syntax
(startIx, endIx, length, grExt) = regexp(str, re)
(startIx, endIx, grExt) = regexpi(str, re)

Description
regexp(str,re) matches regular expression re in string str. A reg-
ular expression is a string which contains meta-characters to match
classes of characters, repetitions and alternatives, as described be-
low.

Once a match is found, the remaining part of str is parsed from the
end of the previous match to find more matches. The result of regexp
is an array of start indices in str and an array of corresponding end
indices. Empty matches have a length endIx-startIx-1=0.

The third output argument, if present, is set to a list whose items
correspond to matches. Items are arrays of size 2-by-ng. Each row cor-
responds to a group, i.e. a subexpression in parentheses in the regular
expression; the first column contains the index of the first character in
str and the second column contains the index of the last character.

regexpi is similar to regexp, except that letter case is ignored.
The following regular expression elements are recognized:

Any character other than those described below Literal
match.

. (dot) Any character.

\0 Nul (0).

\t Tab (9).

\n Newline (10).

\v Vertical tab (11).

\f Form feed (12).

\r Carriage return (13).

\P where P is one of \()[]{}?*+/ P

\xNN Character whose code is NN in hexadecimal.

350 Sysquake Remote ©1999-2016, Calerga Sàrl

\uNNNN Character whose code is NNNN in hexadecimal.

[...] Any of the characters in brackets. Characters can be enu-
marated (e.g. [ax2] to match a, x or 2), provided as ranges with a
hyphen (e.g. [a-c] to match a, b or c) or any combination. Caret
ˆ must not appear first; closing bracket] must appear first; and
hyphen must not be used in a way which could be interpreted as a
range.

[̂ ...] Any character not enumated in brackets (e.g. [̂ a-z] for
any character except for lowercase letters).

AB Catenation of A and B.

A|B One of A or B. | has the lowest priority: ab|c matches ab or c.

A? A (if possible) or nothing.

A* As many repetitions of A as possible, including none.

A+ As many repetitions of A as possible, at least one.

A{n} Exactly n repetitions of A.

A{n,} At least n repetitions of A (as many as possible).

A{n,m} Between n and m repetitions of A (as many as possible).

A?? Nothing (if possible) or A.

A*? As few repetitions of A as possible, including none.

A+? As few repetitions of A as possible, at least one.

A{n,}? At least n repetitions of A (as few as possible).

A{n,m}? Between n and m repetitions of A (as few as possible).

A?+, A*?, A++, A{...}+ Possessive repetitions: as many as possi-
ble, but once the maximum number has been found, does not try
less repetitions should the remaining part of the regular expression
fail to match anything.

(A) Group; matches subexpression A, which is captured for further
reference as \N.

(?:A) Group without capture; just matches subexpression A.

\N where N is a digit from 1 to 9 Character substring which was
matched by the N:th group delimited by parentheses.

ˆ Matches beginning of string.

$ Matches end of string.

LME Reference — strings 351

\b Beginning or end of word.

(?=A) Positive lookahead: succeeds if what follows matches A with-
out consuming A.

(?!A) Negative lookahead: succeeds if what follows does not
match A without consuming A.

(?# comment) Comment (ignored).

\d Digit (can be used inside or outside brackets).

\D Not a digit (can be used inside or outside brackets).

\s White space (can be used inside or outside brackets).

\S Not white space (can be used inside or outside brackets).

\w Alphanumeric (can be used inside or outside brackets).

\W Not alphanumeric (can be used inside or outside brackets).

[:alnum:] Same as A-Za-z0-9 (must be used inside brackets, e.g.
[[:alnum:]])

[:alpha:] Same as A-Za-z (must be used inside brackets, e.g.
[[:alpha:]])

[:blank:] Same as \x20\x09, i.e. space or tab (must be used
inside brackets, e.g. [[:blank:]])

[:cntrl:] Same as \0-\x1f (must be used inside brackets, e.g.
[[:cntrl:]])

[:digit:] Same as 0-9 (must be used inside brackets, e.g.
[[:digit:]])

[:graph:] Same as \x21-\x7e, i.e. ASCII characters without
space and control characters (must be used inside brackets, e.g.
[[:graph:]])

[:lower:] Same as a-z (must be used inside brackets, e.g.
[̂ [:lower:][:digit:]] which is equivalent to [̂ a-z0-9])

[:print:] Same as \x20-\x7e, i.e. ASCII characters without con-
trol characters (must be used inside brackets, e.g. [[:print:]])

[:punct:] Same as !"#$%&’()*+,-./:;<=>?@[\]̂ _‘{|}̃ (must
be used inside brackets, e.g. [[:punct:]])

[:space:] Same as \x20\x09\x0a\x0c\x0d or \s (must be used
inside brackets, e.g. [[:space:]])

352 Sysquake Remote ©1999-2016, Calerga Sàrl

[:upper:] Same as A-Z (must be used inside brackets, e.g.
[[:upper:]])

[:word:] Same as [:alnum:]_ (must be used inside brackets, e.g.
[[:word:]])

[:xdigit:] Same as 0-9A-Fa-f (must be used inside brackets,
e.g. [[:xdigit:]])

Quantifiers ?, * and +, and their lazy and possessive versions (suffixed
with ? or + respectively) have the highest priority. Priority can be
changed with parentheses, e.g. (abc)* or (a|bc)d.

Examples
Simple match without metacharacter:

(startIx, endIx) = regexp(’Some random string’, ’om’)
startIx =

2 10
endIx =

3 11

Dot to match any character:

regexp(’Some random string’, ’S..e’)
1

Anchor to end of string:

regexp(’Some random string’, ’..$’)
17

Repetition:

regexp(’Some random string’, ’r.*m’)
6

By default, repetitions are greedy (as many as possible):

(startIx, endIx) = regexp(’Some random string’, ’.*m’)
startIx =

1
endIx =
11

Lazy repetition (as few as possible):

(startIx, endIx) = regexp(’Some random string’, ’.*?m’)
startIx =

1 4
endIx =

3 11

LME Reference — strings 353

Possessive repetitions keep the largest number of repetitions which
provides a match regardless of subsequent failures:

(startIx, endIx) = regexp(’Some random string’, ’.*m ’)
startIx =

1
endIx =
12

(startIx, endIx) = regexp(’Some random string’, ’.*+m ’)
startIx =
[]

endIx =
[]

Since backslash is an escape character in LME strings, it must be es-
caped itself:

(startIx, endIx) = regexp(’Some random string’, ’\\b\\w.+?\\b’)
startIx =
1 6 13

endIx =
4 11 18

Reference to a captured group:

(startIx, endIx) = regexp(’xx-ab-ab’, ’(.+)-\\1’)
startIx =
4

endIx =
8

Positive lookahead to find words followed by a colon without picking
the colon itself:

(startIx, endIx) = regexp(’mailto:foo@example.com’, ’\\b\\w+(?=:)’)
startIx =
1

endIx =
6

Group (the extent of the whole match is ignored using placeholder
output arguments)̃:

(̃ , ,̃ grExt) = regexp(’Regexp are fun’, ’\\b(\\w+)\\s+(\\w+)\\s+(\\w+)\\b’);
grExt{1}
1 6
8 10

12 14

354 Sysquake Remote ©1999-2016, Calerga Sàrl

Match ignoring case:

regexpi(’Some random string’, ’some’)
1

Case-explicit character classes are still case-significant, but character
enumerations or ranges are not:

regexpi(’Some random string’, ’̂ [[:lower:]]’)
[]

regexpi(’Some random string’, ’̂ [a-z]’)
1

See also
strfind, strtok

setstr

Conversion of an array to a string.

Syntax
str = setstr(A)

Description
setstr(A) converts the elements of array A to characters, resulting
in a string of the same size. Characters are stored in unsigned 16-bit
words.

Example
setstr(65:75)
ABCDEFGHIJK

See also
char, uint16, logical, double

sha1 sha2

Calculate SHA-1 or SHA-2 digest.

Syntax
digest = sha1(strb)
digest = sha1(fd)
digest = sha1(..., type=t)
digest = sha2(...)
digest = sha2(..., variant=v)

LME Reference — strings 355

Description
sha1(strb) calculates the SHA-1 digest of strb which represents bi-
nary data. strb can be a string (only the least-significant byte of each
character is considered) or an array of bytes of class uint8 or int8.
The result is a string of 40 hexadecimal digits. It is believed to be hard
to create the input to get a given digest, or to create two inputs with
the same digest.

sha1(fd) calculates the SHA-1 digest of the bytes read from file
descriptor fd until the end of the file. The file is left open.

Named argument type can change the output type. It can be
’uint8’ for an uint8 array of 20 bytes (raw SHA-1 hash result), ’hex’
for its representation as a string of 40 hexadecimal digits (default), or
base64 for its conversion to Base64 in a string of 28 characters.

SHA-1 digest is an Internet standard described in RFC 3174.
sha2 calculates the SHA-256 digest, a 256-bit variant of the SHA-

2 hash algorithm. Its arguments are the same as those of sha1. In
addition, named argument variant can specify one of the supported
SHA-2 variants: 224, 256 (default), 384, or 512.

Example
SHA-1 digest of the three characters ’a’, ’b’, and ’c’:

sha1(’abc’)
a9993e364706816aba3e25717850c26c9cd0d89d

SHA-224 digest of the empty message ’’:

sha2(’’, variant=224)
d14a028c2a3a2bc9476102bb288234c415a2b01f828ea62ac5b3e42f

See also
md5, hmac

split

Split a string.

Syntax
L = split(string, separator)

Description
split(string,separator) finds substrings of string separated by
separator and return them as a list. Empty substring are discarded.
sepatator is a string of one or more characters.

356 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
split(’abc;de;f’, ’;’)
{’abc’, ’de’, ’f’}

split(’++a+++b+++’,’++’)
{’a’, ’+b’, ’+’}

See also
strfind

strcmp

String comparison.

Syntax
b = strcmp(s1, s2)
b = strcmp(s1, s2, n)

Description
strcmp(s1, s2) is true if the strings s1 and s2 are equal (i.e. same
length and corresponding characters are equal). strcmp(s1, s2, n)
compares the strings up to the n:th character. Note that this function
does not return the same result as the strcmp function of the standard
C library.

Examples
strcmp(’abc’,’abc’)
true

strcmp(’abc’,’def’)
false

strcmp(’abc’,’abd’,2)
true

strcmp(’abc’,’abd’,5)
false

See also
strcmpi, operator ===, operator =̃=, operator ==, strfind, strmatch

strcmpi

String comparison with ignoring letter case.

Syntax
b = strcmpi(s1, s2)
b = strcmpi(s1, s2, n)

LME Reference — strings 357

Description
strcmpi compares strings for equality, ignoring letter case. In every
other respect, it behaves like strcmp.

Examples
strcmpi(’abc’,’aBc’)
true

strcmpi(’Abc’,’abd’,2)
true

See also
strcmp, operator ===, operator =̃=, operator ==, strfind, strmatch

strfind

Find a substring in a string.

Syntax
pos = strfind(str, sub)

Description
strfind(str,sub) finds occurrences of string sub in string str and
returns a vector of the positions of all occurrences, or the empty vector
[] if there is none. Occurrences may overlap.

Examples
strfind(’ababcdbaaab’,’ab’)
1 3 10

strfind(’ababcdbaaab’,’ac’)
[]

strfind(’aaaaaa’,’aaa’)
1 2 3

See also
find, strcmp, strrep, split, strmatch, strtok

strmatch

String match.

Syntax
i = strmatch(str, strMatrix)
i = strmatch(str, strList)
i = strmatch(..., ’exact’)

358 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
strmatch(str,strMatrix) compares string str with each row of the
character matrix strMatrix; it returns the index of the first row whose
beginning is equal to str, or 0 if no match is found. Case is significant.

strmatch(str,strList) compares string str with each element
of list or cell array strList, which must be strings.

With a third argument, which must be the string ’exact’, str must
match the complete row or element of the second argument, not only
the beginning.

Examples
strmatch(’abc’,[’axyz’;’uabc’;’abcd’;’efgh’])
3

strmatch(’abc’,[’axyz’;’uabc’;’abcd’;’efgh’],’exact’)
0

strmatch(’abc’,{’ABC’,’axyz’,’abcdefg’,’ab’,’abcd’})
3

See also
strcmp, strfind

strrep

Replace a substring in a string.

Syntax
newstr = strrep(str, sub, repl)

Description
strrep(str,sub,repl) replaces all occurrences of string sub in string
str with string repl.

Examples
strrep(’ababcdbaaab’,’ab’,’X’)
’XXcdbaaX’

strrep(’aaaaaaa’,’aaa’,’12345’)
’1234512345a’

See also
strfind, strcmp, strmatch, strtok

strtok

Token search in string.

LME Reference — strings 359

Syntax
(token, remainder) = strtok(str)
(token, remainder) = strtok(str, separators)

Description
strtok(str) gives the first token in string str. A token is defined as
a substring delimited by separators or by the beginning or end of the
string; by default, separators are spaces, tabulators, carriage returns
and line feeds. If no token is found (i.e. if str is empty or contains
only separator characters), the result is the empty string.

The optional second output is set to what follows immediately the
token, including separators. If no token is found, it is the same as str.

An optional second input argument contains the separators in a
string.

Examples
Strings are displayed with quotes to show clearly the separators.

strtok(’ ab cde ’)
’ab’

(t, r) = strtok(’ ab cde ’)
t =
’ab’

r =
’ cde ’

(t, r) = strtok(’2, 5, 3’)
t =
’2’

r =
’, 5, 3’

See also
strmatch, strfind, strtrim

strtrim

Remove leading and trailing blank characters from a string.

Syntax
s2 = strtrim(s1)

Description
strtrim(s1) removes the leading and trailing blank characters from
string s1. Blank characters are spaces (code 32), tabulators (code 9),
carriage returns (code 13), line feeds (code 10), and null characters
(code 0).

360 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
double(’ \tAB CD\r\n\0’)
32 9 65 66 32 32 67 68 13 10 0

double(strtrim(’ \tAB CD\n\r\0’)))
65 66 32 32 67 68

See also
deblank, strtok

unicodeclass

Unicode character class.

Syntax
cls = unicodeclass(c)

Description
unicodeclass(c) gives the Unicode character class
(General_Category property in the Unicode Character Database) of its
argument c, which must be a single-character string. The result is
one of the following two-character strings:

Class Description Class Description
’Lu’ Letter, Uppercase ’Pi’ Punctuation, Initial qupte
’Ll’ Letter, Lowercase ’Pf’ Punctuation, Final Quote
’Lt’ Letter, Titlecase ’Po’ Punctuation, Other
’Lm’ Letter, Modifier ’Sm’ Symbol, Math
’Lo’ Letter, Other ’Sc’ Symbol, Currency
’Mn’ Mark, Non-Spcacing ’Sk’ Symbol, Modifier
’Mc’ Mark, Spacing Combining ’So’ Symbol, Other
’Me’ Mark, Enclosing ’Zs’ Separator, Spcace
’Nd’ Number, Decimal Digit ’Zl’ Separator, Line
’Nl’ Number, Letter ’Zp’ Separator, Paragraph
’No’ Number, Other ’Cc’ Other, Control
’Pc’ Punctuation, Connector ’Cf’ Other, Format
’Pd’ Punctuation, Dash ’Cs’ Other, Surrogate
’Ps’ Punctuation, Open ’Co’ Other, Private Use
’Pe’ Punctuation, Close ’Cn’ Other, Not Assigned

See also
isletter, isdigit, isspace

upper

Convert all lowercase letters to lowercase.

LME Reference — strings 361

Syntax
s2 = upper(s1)

Description
upper(s1) converts all the lowercase letters of string s1 to uppercase,
according to the Unicode Character Database.

Example
upper(’abcABC123’)
ABCABC123

See also
lower, isletter

utf32decode

Decode Unicode characters encoded with UTF-32.

Syntax
str = utf32decode(b)

Description
utf32decode(b) decodes the contents of uint32 or int32 array b which
represents Unicode characters encoded with UTF-32 (basically, Uni-
code code point). The result is a standard character array with a single
row, usually encoded with UTF-16. Invalid codes are ignored.

If all the codes in b correspond to the Basic Multilingual Plane
(16-bits, and not surrogate 0xd800-0xdfff), the result is equivalent to
char(b).

See also
utf32encode, utf8decode

utf32encode

Encode a string of Unicode characters using UTF-32.

Syntax
b = utf32encode(str)

362 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
utf32encode(str) encodes the contents of character array str using
UTF-32. Each Unicode character in str, made of 1 or 2 UTF-16 words,
corresponds to one UTF-32 code. The result is an array of unsigned
32-bit integers.

If all the characters in str correspond to the Basic Multilingual
Plane (16-bits, and no surrogate pairs), the result is equivalent to
uint32(str).

Examples
utf32encode(’abc’)
1x3 uint32 array
97 98 99

str = utf32decode(65872uint32);
double(str)
55296 56656

utf32encode(str)
65872uint32

See also
utf32decode, utf8encode

utf8decode

Decode Unicode characters encoded with UTF-8.

Syntax
str = utf8decode(b)

Description
utf8decode(b) decodes the contents of uint8 or int8 array b which
represents Unicode characters encoded with UTF-8. Each Unicode
character corresponds to up to 4 bytes of UTF-8 code. The result is
a standard character array with a single row; characters are usually
encoded as UTF-16, with 1 or 2 words per character. Invalid codes (for
example when the beginning of the decoded data does not correspond
to a character boundary) are ignored.

See also
utf8encode, utf32decode

utf8encode

Encode a string of Unicode characters using UTF-8.

LME Reference — quaternions 363

Syntax
b = utf8encode(str)

Description
utf8encode(str) encodes the contents of character array str using
UTF-8. Each Unicode character in str corresponds to up to 4 bytes of
UTF-8 code. The result is an array of unsigned 8-bit integers.

If the input string does not contain Unicode characters, the output
is invalid.

Example
b = utf8encode([’abc’, 200, 2000, 20000])
b =
1x10 uint8 array
97 98 99 195 136 223 144 228 184 160

str = utf8decode(b);
double(str)
97 98 99 200 2000 20000

See also
utf8decode, utf32encode

5.23 Quaternions

Quaternion functions support scalar and arrays of quaternions. Basic
arithmetic operators and functions are overloaded to support expres-
sions with the same syntax as for numbers and matrices.

Quaternions are numbers similar to complex numbers, but with four
components instead of two. The unit imaginary parts are named , j,
and k. A quaternion can be written + + jy + kz. The following
relationships hold:

2 = j2 = k2 = jk = −1

It follows that the product of two quaternions is not commutative;
for instance, j = k but j = −k.

Quaternions are convenient to represent arbitrary rotations in the
3d space. They are more compact than matrices and are easier to
normalize. This makes them suitable to simulation and control of me-
chanical systems and vehicles, such as flight simulators and robotics.

Functions below are specific to quaternions:

364 Sysquake Remote ©1999-2016, Calerga Sàrl

Function Purpose
isquaternion test for quaternion type
q2mat conversion to rotation matrix
q2rpy conversion to attitude angles
q2str conversion to string
qimag imaginary parts
qinv element-wise inverse
qnorm scalar norm
qslerp spherical linear interpolation
quaternion quaternion creation
rpy2q conversion from attitude angles

Operators below accept quaternions as arguments:

Function Operator Purpose
ctranspose ’ conjugate transpose
eq == element-wise equality
horzcat [,] horizontal array concatenation
ldivide .\ left division
ne =̃ element-wise inequality
minus - difference
mldivide \ matrix left division
mrdivide / matrix right division
mtimes * matrix multiplication
plus + addition
rdivide ./ division
times .* multiplication
transpose .’ transpose
uminus - unary minus
uplus + unary plus
vertcat [;] vertical array concatenation

Most of these operators work as expected, like with complex scalars
and matrices. Multiplication and left/right division are not commuta-
tive. Matrix operations are not supported: operators *, /, \, and ˆ are
defined as a convenience (they are equivalent to .*, ./, .\, and .̂
respectively) and work only element-wise with scalar arguments.

Mathematical functions below accept quaternions as arguments;
with arrays of quaternions, they are applied to each element sepa-
rately.

LME Reference — quaternions 365

Function Purpose
abs absolute value
conj conjugate
cos cosine
exp exponential
log natural logarithm
real real part
sign quaternion sign (normalization)
sin sine
sqrt square root

Functions below performs computations on arrays of quaternions.

Function Purpose
cumsum cumulative sum
diff differences
double conversion to array of double
mean arithmetic mean
sum sum

Functions below are related to array size.

Function Purpose
beginning first subscript
cat array concatenation
end last subscript
flipdim flip array
fliplr flip left-right
flipud flip upside-down
ipermute dimension inverse permutation
isempty test for empty array
length length of vector
ndims number of dimensions
numel number of elements
permute dimension permutation
repmat array replication
reshape array reshaping
rot90 array rotation
size array size
squeeze remove singleton dimensions

Finally, functions below are related to output and assignment.

366 Sysquake Remote ©1999-2016, Calerga Sàrl

Function Purpose
disp display
dumpvar conversion to string
subsasgn assignment to subarrays or to quaternion parts
subsref reference to subarrays or to quaternion parts

Function imag is replaced with qimag which gives a quaternion with
the real part set to zero, because there are three imaginary compo-
nents instead of one with complex numbers.

Operators and functions which accept multiple arguments convert
automatically double arrays to quaternions, ignoring the imaginary
part of complex numbers.

Conversion to numeric arrays with double adds a dimension for
the real part and the three imaginary parts. For example, converting a
scalar quaternion gives a 4-by-1 double column vector and converting
a 2-by-2 quaternion array gives a 2-by-2-by-4 double array. Real and
imaginary components can be accessed with the field access notation:
q.w is the real part of q, q.x, q.y, and q.z are its imaginary parts, and
q.v is its imaginary parts as an array similar to the result of double
but without the real part.

Compatibility note: native functions for quaternions replace library
quaternion which defined quaternion scalars and matrices. It is much
faster and supports arrays of more than two dimensions; on the other
hand, matrix-oriented functions are not supported anymore, and the
result of dumpvar is not directly compatible.

isquaternion

Test for a quaternion.

Syntax
b = isquaternion(q)

Description
isquaternion(q) is true if the input argument is a quaternion and
false otherwise.

Examples
isquaternion(2)
false

isquaternion(quaternion(2))
true

See also
quaternion, isnumeric

LME Reference — quaternions 367

q2mat

Conversion from quaternion to rotation matrix.

Syntax
R = q2mat(q)

Description
R=q2mat(q) gives the 3x3 orthogonal matrix R corresponding to the
rotation given by scalar quaternion q. For a vector a=[x;y;z] and
its representation as a pure quaternion aq=quaternion(x,y,z), the
rotation can be performed with quaternion multiplication bq=q*aq/q
or matrix multiplication b=R*a.

Input argument q does not have to be normalized; a quaternion cor-
responding to a given rotation is defined up to a multiplicative factor.

Example
q = rpy2q(0.1, 0.3, 0.2);
R = q2mat(q)
R =
0.9363 -0.1688 0.3080
0.1898 0.9810 0.0954

-0.2955 0.0954 0.9506
aq = quaternion(1, 2, 3);
q * aq / q
1.5228i+2.0336j+2.7469k

a = [1; 2; 3];
R * a
1.5228
2.4380
2.7469

See also
q2rpy, rpy2q, quaternion

q2rpy

Conversion from quaternion to attitude angles.

Syntax
(pitch, roll, yaw) = q2rpy(q)

368 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
q2rpy(q) gives the pitch, roll, and yaw angles corresponding to the
rotation given by quaternion q. It is the inverse of rpy2q. All angles
are given in radians.

If the input argument is a quaternion array, the results are arrays
of the same size; conversion from quaternion to angles is performed
independently on corresponding elements.

See also
rpy2q, q2mat, quaternion

q2str

Conversion from quaternion to string.

Syntax
str = q2str(q)

Description
q2str(q) converts quaternion q to its string representation, with the
same format as disp.

See also
quaternion, format

qimag

Quaternion imaginary parts.

Syntax
b = qimag(q)

Description
qimag(q) gives the imaginary parts of quaternion q as a quaternion,
i.e. the same quaternion where the real part is set to zero. real(q)
gives the real part of quaternion q as a double number.

Example
q = quaternion(1,2,3,4)
q =
1+2i+3j+4k

real(q)
1

qimag(q)
2i+3j+4k

LME Reference — quaternions 369

See also
quaternion

qinv

Quaternion element-wise inverse.

Syntax
b = qinv(q)

Description
qinv(q) gives the inverse of quaternion q. If its input argument is a
quaternion array, the result is an quaternion array of the same size
whose elements are the inverse of the corresponding elements of the
input.

The inverse of a normalized quaternion is its conjugate.

Example
q = quaternion(0.4,0.1,0.2,0.2)
q =
0.4+0.1i+0.2j+0.2k

p = qinv(q)
p =
1.6-0.4i-0.8j-0.8k

abs(q)
0.5

abs(p)
2

See also
quaternion, qnorm, conj

qnorm

Quaternion scalar norm.

Syntax
n = qnorm(q)

Description
qnorm(q) gives the norm of quaternion q, i.e. the sum of squares of
its components, or the square of its absolute value. If q is an array of
quaternions, qnorm gives a double array of the same size where each
element is the norm of the corresponding element of q.

370 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
quaternion, abs

qslerp

Quaternion spherical linear interpolation.

Syntax
q = qslerp(q1, q2, t)

Description
qslerp(q1,q2,t) performs spherical linear interpolation between
quaternions q1 and q2. The result is on the smallest great circle arc
defined by normalized q1 and q2 for values of real number t between
0 and 1.

If q1 or q2 is 0, the result is NaN. If they are opposite, the great
circle arc going through 1, or 1i, is picked.

If input arguments are arrays of compatible size (same size or
scalar), the result is a quaternion array of the same size; conversion
from angles to quaternion is performed independently on
corresponding elements.

Example
q = qslerp(1, rpy2q(0, 1, -1.5), [0, 0.33, 0.66, 1]);
(roll, pitch, yaw) = q2rpy(q)
roll =
0.0000 0.1843 0.2272 0.0000

pitch =
0.0000 0.3081 0.6636 1.0000

yaw =
0.0000 -0.4261 -0.8605 -1.5000

See also
quaternion, rpy2q, q2rpy

quaternion

Quaternion creation.

Syntax
q = quaternion
q = quaternion(w)
q = quaternion(c)
q = quaternion(x, y, z)
q = quaternion(w, x, y, z)
q = quaternion(w, v)

LME Reference — quaternions 371

Description
With a real argument, quaternion(x) creates a quaternion object
whose real part is w and imaginary parts are 0. With a complex
argument, quaternion(c) creates the quaternion object
real(c)+i*imag(c).

With four real arguments, quaternion(w,x,y,z) creates the
quaternion object w+i*x+j*y+k*z.

With three real arguments, quaternion(x,y,z) creates the pure
quaternion object i*x+j*y+k*z.

In all these cases, the arguments may be scalars or arrays of the
same size.

With two arguments, quaternion(w,v) creates a quaternion object
whose real part is w and imaginary parts is array v. v must have one
more dimension than w for the three imaginary parts.

Without argument, quaternion returns the zero quaternion object.
The real or imaginary parts of a quaternion can be accessed with

field access, such as q.w, q.x, q.y, q.z, and q.v.

Examples
q = quaternion(1, 2, 3, 4)
q =
1+2i+3j+4k

q + 5
6+2i+3j+4k

q * q
-28+4i+6j+8k

Q = [q, 2; 2*q, 5]
2x2 quaternion array

Q.y
3 0
6 0

q = quaternion(1, [5; 3; 7])
q =
1+5i+3j+7k

q.v
5
3
7

See also
real, qimag, q2str, rpy2q

rpy2q

Conversion from attitude angles to quaternion.

372 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
q = rpy2q(pitch, roll, yaw)

Description
rpy2q(pitch,roll,yaw) gives the quaternion corresponding to a
rotation of angle yaw around the z axis, followed by a rotation of
angle pitch around the y axis, followed by a rotation of angle roll
round the x axis. All angles are given in radians. The result is a
normalized quaternion whose real part is cos(ϑ/2) and imaginary part
sin(ϑ/2)

�

 + yj + zk
�

, for a rotation of ϑ around unit vector
�

 y z
�T . The rotation is applied to a point [y z]T given as a pure

quaternion = + yj + zk, giving point also as a pure quaternion;
then b=q*a/q and a=q\b*q. The rotation can also be seen as
changing coordinates from body to absolute, where the body’s
attitude is given by pitch, roll and yaw.

In order to have the usual meaning of pitch, roll and yaw, the x axis
must be aligned with the direction of motion, the y axis with the lateral
direction, and the z axis with the vertical direction, with the usual sign
conventions for cross products. Two common choices are x pointing
forward, y to the left, and z upward; or x forward, y to the right, and z
downward.

If input arguments are arrays of compatible size (same size or
scalar), the result is a quaternion array of the same size; conversion
from angles to quaternion is performed independently on
corresponding elements.

Example
Conversion of two vectors from aircraft coordinates (x axis forward, y
axis to the left, z axis upward) to earth coordinates (x directed to the
north, y to the west, z to the zenith). In aircraft coordinates, vectors
are [2;0;0] (propeller position) and [0;5;0] (left wing tip). The air-
craft attitude has a pitch of 10 degrees upward, i.e. -10 degrees with
the choice of axis, and null roll and yaw.

q = rpy2q(0, -10*pi/180, 0)
q =
0.9962-0.0872j

q * quaternion(2, 0, 0) / q
1.9696i+0.3473k

q * quaternion(0, 5, 0) / q
5j

See also
q2rpy, q2mat, quaternion

LME Reference — lists 373

5.24 List Functions

apply

Function evaluation with arguments in lists.

Syntax
listout = apply(fun, listin)
listout = apply(fun, listin, nargout)
listout = apply(fun, listin, na)
listout = apply(fun, listin, nargout, na)

Description
listout=apply(fun,listin) evaluates function fun with input argu-
ments taken from the elements of list listin. Output arguments are
grouped in list listout. Function fun is specified by either its name
as a string, a function reference, or an anonymous or inline function.

The number of expected output arguments can be specified with
an optional third input argument nargout. By default, the maximum
number of output arguments is requested, up to 256; this limit exists
to prevent functions with an unlimited number of output arguments,
such as deal, from filling memory.

With a 4th argument na (or 3rd if nargout is not specified), named
arguments can be provided as a structure.

Examples
apply(@size, {magic(3)}, 2)
{3, 3}

apply(@(x,y) 2*x+3*y, {5, 10})
{40}

The maximum number of output arguments of min is 2 (minimum
value and its index):

apply(@min, {[8, 3, 4, 7]})
{3, 2}

Two equivalent ways of calling disp with a named argument fd to
specify the standard error file descriptor 2:

disp(123, fd=2);
apply(@disp, {123}, 0, {fd=2});

See also
map, feval, inline, operator @, varargin, namedargin, varargout

374 Sysquake Remote ©1999-2016, Calerga Sàrl

join

List concatenation.

Syntax
list = join(l1, l2, ...)

Description
join(l1,l2,...) joins elements of lists l1, l2, etc. to make a larger
list.

Examples
join({1,’a’,2:5}, {4,2}, {{’xxx’}})
{1,’a’,[2,3,4,5],4,2,{’xxx’}}

join()
{}

See also
operator ,, operator ;, replist

islist

Test for a list object.

Syntax
b = islist(obj)

Description
islist(obj) is true if the object obj is a list, false otherwise.

Examples
islist({1, 2, ’x’})
true

islist({})
true

islist([])
false

ischar(’’)
false

See also
isstruct, isnumeric, ischar, islogical, isempty

LME Reference — lists 375

list2num

Conversion from list to numeric array.

Syntax
A = list2num(list)

Description
list2num(list) takes the elements of list, which must be numbers
or arrays, and concatenates them on a row (along second dimension)
as if they were placed inside brackets and separated with commas.
Element sizes must be compatible.

Example
list2num({1, 2+3j, 4:6})
1 2+3j 4 5 6

See also
num2list, operator [], operator ,

map

Function evaluation for each element of a list

Syntax
(listout1,...) = map(fun, listin1, ...)

Description
map(fun,listin1,...) evaluates function fun successively for each
corresponding elements of the remaining arguments, which must be
lists or cell arrays. It returns the result(s) of the evaluation as list(s)
or cell array(s) with the same size as inputs. Input lists which contain
a single element are repeated to match other arguments if necessary.
Function fun is specified by either its name as a string, a function
reference, or an anonymous or inline function.

Examples
map(’max’, {[2,6,4], [7,-1], 1:100})
{6, 7, 100}

map(@(x) x+10, {3,7,16})
{13, 17, 26}

(nr, nc) = map(@size, {1,’abc’,[4,7;3,4]})

376 Sysquake Remote ©1999-2016, Calerga Sàrl

nr =
{1,1,2}

nc =
{1,3,2}

s = map(@size, {1,’abc’,[4,7;3,4]})
s =
{[1,1], [1,3], [2,2]}

map(@disp, {’hello’, ’lme’})
hello
lme

Lists with single elements are expanded to match the size of other
lists. The following example computes atan2(1,2) and atan2(1,3):

map(@atan2, {1}, {2,3})
{0.4636,0.3218}

See also
apply, cellfun, for, inline, operator @

num2list

Conversion from array to list.

Syntax
list = num2list(A)
list = num2list(A, dim)

Description
num2list(A) creates a list with the elements of non-cell array A.

num2list(A,dim) cuts array A along dimension dim and creates a
list with the result.

Examples
num2list(1:5)
{1, 2, 3, 4, 5}

num2list([1,2;3,4])
{1, 2, 3, 4}

num2list([1, 2; 3, 4], 1)
{[1, 2], [3, 4]}

num2list([1, 2; 3, 4], 2)
{[1; 3], [2; 4]}

See also
list2num, num2cell

LME Reference — structures 377

replist

Replicate a list.

Syntax
listout = replist(listin, n)

Description
replist(listin,n) makes a new list by concatenating n copies of list
listin.

Example
replist({1, ’abc’}, 3)
{1,’abc’,1,’abc’,1,’abc’}

See also
join, repmat

5.25 Structure Functions

cell2struct

Convert a cell array to a structure array.

Syntax
SA = cell2struct(CA, fields)
SA = cell2struct(CA, fields, dim)

Description
cell2struct(CA,fields) converts a cell array to a structure
array. The size of the result is size(SA)(2:end), where nf is the
number of fields. Field SA(i1,i2,...).f of the result contains cell
CA{j,i1,i2,...}, where f is field field{j}. Argument fields
contains the field names as strings.

With a third input argument, cell2struct(CA,fields,dim) picks
fields of each element along dimension dim. The size of the result is
the size of CA where dimension dim is removed.

Examples
SA = cell2struct({1, ’ab’; 2, ’cde’}, {’a’, ’b’});
SA = cell2struct({1, 2; ’ab’, ’cde’}, {’a’, ’b’}, 2);

378 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
struct2cell

fieldnames

List of fields of a structure.

Syntax
fields = fieldnames(strct)

Description
fieldnames(strct) returns the field names of structure strct as a
list of strings.

Example
fieldnames({a=1, b=1:5})
{’a’, ’b’}

See also
struct, isfield, orderfields, rmfield

getfield

Value of a field in a structure.

Syntax
value = getfield(strct, name)

Description
getfield(strct,name) gets the value of field name in structure
strct. It is an error if the field does not exist. getfield(s,’f’)
gives the same value as s.f. getfield is especially useful when the
field name is not fixed, but is stored in a variable or is the result of an
expression.

See also
operator ., struct, setfield, rmfield

isfield

Test for the existence of a field in a structure.

LME Reference — structures 379

Syntax
b = isfield(strct, name)

Description
isfield(strct, name) is true if the structure strct has a field whose
name is the string name, false otherwise.

Examples
isfield({a=1:3, x=’abc’}, ’a’)
true

isfield({a=1:3, x=’abc’}, ’A’)
false

See also
fieldnames, isstruct, struct

isstruct

Test for a structure object.

Syntax
b = isstruct(obj)

Description
isstruct(obj) is true if its argument obj is a structure or structure
array, false otherwise.

Examples
isstruct({a=123})
true

isstruct({1, 2, ’x’})
false

a.f = 3;
isstruct(a)
true

See also
struct, isfield, isa, islist, ischar, isobject, islogical

orderfields

Reorders the fields of a structure.

380 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
strctout = orderfields(strctin)
strctout = orderfields(strctin, structref)
strctout = orderfields(strctin, names)
strctout = orderfields(strctin, perm)
(strctout, perm) = orderfields(...)

Description

With a single input argument, orderfields(strctin) reorders struc-
ture fields by sorting them by field names.

With two input arguments, orderfields reorders the fields of the
first argument after the second argument. Second argument can be
a permutation vector containing integers from 1 to length(strctin),
another structure with the same field names, or a list of names. In the
last cases, all the fields of the structure must be present in the second
argument.

The (first) output argument is a structure with the same fields and
the same value as the first input argument; the only difference is the
field order. An optional second output argument is set to the permu-
tation vector.

Examples
s = {a=123, c=1:3, b=’abcde’}
s =
a: 123
c: real 1x3
b: ’abcde’

(t, p) = orderfields(s)
t =
a: 123
b: ’abcde’
c: real 1x3

p =
1
3
2

t = orderfields(s, {’c’, ’b’, ’a’})
t =
c: real 1x3
b: ’abcde’
a: 123

See also

struct, fieldnames

LME Reference — structures 381

rmfield

Deletion of a field in a structure.

Syntax
strctout = rmfield(strctin, name)

Description
strctout=rmfield(strctin,name) makes a structure strctout with
the same fields as strctin, except for field named name which is re-
moved. If field name does not exist, strctout is the same as strctin.

Example
x = rmfield({a=1:3, b=’abc’}, ’a’);
fieldnames(x)
b

See also
struct, setfield, getfield, orderfields

setfield

Assignment to a field in a structure.

Syntax
strctout = setfield(strctin, name, value)

Description
strctout=setfield(strctin,name,value) makes a structure
strctout with the same fields as strctin, except that field
named name is added if it does not exist yet and is set to
value. s=setfield(s,’f’,v) has the same effect as s.f=v;
s=setfield(s,str,v) has the same effect as s.(str)=v.

See also
operator ., struct, getfield, rmfield

struct

Creation of a structure

382 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
strct = struct(field1=value1, field2=value2, ...)
strct = struct(fieldname1, value1, fieldname2, value2, ...)
strct = {field1=value1, field2=value2, ...}

Description
struct builds a new structure. With named arguments, the name of
each argument is used as the field name. Otherwise, input arguments
are used by pairs to create the fields; for each pair, the first argument
is the field name, provided as a string, and the second one is the field
value.

Instead of named arguments, a more compact notation consists in
writing named values between braces. In that case, all values must
be named; when no value has a name, a list is created, and mixed
named and unnamed values are invalid. Fields are separated by com-
mas; semicolons separate elements of n-by-1 struct arrays. See the
documentation of braces for more details.

Examples
Three equivalent ways to create a structure with two fields a and b:

x = {a=1, b=2:5};
x = struct(a=1, b=2:5);
x = struct(’a’, 1, ’b’, 2:5);
x.a
1

x.b
2 3 4 5

See also
structarray, isstruct, isfield, rmfield, fieldnames, operator {}

struct2cell

Convert a structure array to a cell array.

Syntax
CA = struct2cell(SA)

Description
struct2cell(SA) converts a structure or structure array to a cell
array. The size of the result is [nf,size(SA)], where nf is the
number of fields. Cell CA{j,i1,i2,...} of the result contains field
SA(i1,i2,...).f, where f is the j:th field.

LME Reference — structures 383

Example
SA = cell2struct({1, ’ab’; 2, ’cde’}, {’a’, ’b’});
CA = struct2cell(SA);

See also
cell2struct

structarray

Create a structure array.

Syntax
SA = structarray(field1=A1, field2=A2, ...)
SA = structarray(fieldname1, A1, fieldname2, A2, ...)

Description
structarray builds a new structure array. With named arguments,
the name of each argument is used as the field name, and the value
is a cell array whose elements become the corresponding values in
the result. Otherwise, input arguments are used by pairs to create the
fields; for each pair, the first argument is the field name, provided as
a string, and the second one is the field values as a cell array.

In both cases, all cell arrays must have the same size; the resulting
structure array has the same size.

Example
The following assignments produce the same result:

SA = structarray(a = {1,2;3,4}, b = {’a’, 1:3; ’def’, true});
SA = structarray(’a’, {1,2;3,4}, ’b’, {’a’, 1:3; ’def’, true});

See also
struct, cell2struct

structmerge

Merge the fields of two structures.

Syntax
S = structmerge(S1, S2)

384 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
structmerge(S1,S2) merges the fields of S1 and S2, producing a new
structure containing the fields of both input arguments. More pre-
cisely, to build the result, structmerge starts with S1; each field which
also exists in S2 is set to the value in S2; and finally, fields in S2 which
do not exist in S1 are added.

If S1 and/or S2 are structure arrays, they must have the same size
or one of them must be a simple structure (size 1x1). The result is
a structure array of the same size where each element is obtained
separately from the corresponding elements of S1 and S2; a simple
structure argument is reused as necessary.

Examples
S = structmerge({a=2}, {b=3})
S =
a: 2
b: 3

S = structmerge({a=1:3, b=4}, {a=’AB’, c=10})
S =
a: ’AB’
b: 4
c: 10

See also
fieldnames, setfield, cat

5.26 Object Functions

class

Object creation.

Syntax
object = class(strct, ’classname’)
object = class(strct, ’classname’, parent1, ...)
str = class(object)

Description
class(strct,’classname’) makes an object of the specified class
with the data of structure strct. Object fields can be accessed
only from methods of that class, i.e. functions whose name is
classname::methodname. Objects must be created by the class
constructor classname::classname.

LME Reference — objects 385

class(strct,’classname’,parent1,...) makes an object of the
specified class which inherits fields and methods from one or several
other object(s) parent1, ... Parent objects are inserted as additional
fields in the object, with the same name as the class. Fields of parent
objects cannot be directly accessed by the new object’s methods, only
by the parent’s methods.

class(object) gives the class of object as a string. The table
below gives the name of native types.

Class Native type
double real or complex double scalar or array
single real or complex single scalar or array
int8/16/32/64 8/16/32/64-bit signed integer scalar or array
uint8/16/32/64 8/16/32/64-bit unsigned integer scalar or array
logical logical scalar or array
char character or character array
list list
cell cell array
struct scalar structure
structarray structure array
inline inline function
funref function reference
null null value

Examples
o1 = class({fld1=1, fld2=rand(4)}, ’c1’);
o2 = class({fld3=’abc’}, ’c2’, o1);
class(o2)
c2

See also
struct, inferiorto, superiorto, isa, isobject, methods

inferiorto

Set class precedence.

Syntax
inferiorto(’class1’, ...)

Description
Called in a constructor, inferiorto(’class1’,...) specifies that
the class has a lower precedence than classes whose names are given
as input arguments. Precedence is used when a function has object
arguments of different classes: the method defined for the class with
the highest precedence is called.

386 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
superiorto, class

isa

Test for an object of a given class.

Syntax
b = isa(object,’classname’)

Description
isa(object,’classname’) returns true of object is an object of class
class, directly or by inheritance. In addition to the class names given
by class, the following classes are supported:

Class Native type
cell list or cell array
numeric double, single or integer scalar or array
float double or single scalar or array
integer integer scalar or array

Example
isa(pi,’double’)
true

See also
class, isobject, methods

isnull

Test for a null value.

Syntax
b = isnull(a)

Description
isnull(a) returns true if a is the null value created with null, or false
for any value of any other type.

See also
class, null

LME Reference — objects 387

isobject

Test for an object.

Syntax
b = isobject(a)

Description
object(a) returns true if a is an object created with class.

See also
class, isa, isstruct

methods

List of methods for a class.

Syntax
methods classname
list = methods(’classname’)

Description
methods classname displays the list of methods defined for class
classname. Inherited methods and private methods are ignored.
With an output argument, methods gives produces a list of strings.

See also
class, info

null

Null value.

Syntax
obj = null

Description
null gives the only value of the null data type. It stands for the lack
of any value. Null values can be tested with isnull or with equality
or inequality operators == and =̃.

With an input argument, null(A) gives the null space of matrix A.

388 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
n = null
n =
null

isnull(n)
true

n == null
true

n =̃ null
false

class(n)
null

See also

isnull, null (linear algebra)

superclasses

Get list of superclasses.

Syntax
list = superclasses(obj)

Description

superclasses(obj) gives the list of the names of parent classes (su-
perclasses) of the object obj. Parent classes are specified as additional
arguments to class when the object is constructed.

Example
use lti;
G = tf(1, [1, 2]);
class(G)
tf

superclasses(G)
{’lti’}

isa(G, ’lti’)
true

See also

class, isa

LME Reference — logical functions 389

5.27 Logical Functions

all

Check whether all the elements are true.

Syntax
v = all(A)
v = all(A,dim)
b = all(v)

Description
all(A) performs a logical AND on the elements of the columns of array
A, or the elements of a vector. If a second argument dim is provided,
the operation is performed along that dimension.

all can be omitted if its result is used by if or while, because
these statements consider an array to be true if all its elements are
nonzero.

Examples
all([1,2,3] == 2)
false

all([1,2,3] > 0)
true

See also
any, operator &, bitall

any

Check whether any element is true.

Syntax
v = any(A)
v = any(A,dim)
b = any(v)

Description
any(A) performs a logical OR on the elements of the columns of array
A, or the elements of a vector. If a second argument dim is provided,
the operation is performed along that dimension.

390 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
any([1,2,3] == 2)
true

any([1,2,3] > 5)
false

See also
all, operator |, bitany

bitall

Check whether all the corresponding bits are true.

Syntax
v = bitall(A)
v = bitall(A,dim)
b = bitall(v)

Description
bitall(A) performs a bitwise AND on the elements of the columns
of array A, or the elements of a vector. If a second argument dim is
provided, the operation is performed along that dimension. A can be
a double or an integer array. For double arrays, bitall uses the 32
least-significant bits.

Examples
bitall([5, 3])
1

bitall([7uint8, 6uint8; 3uint8, 6uint8], 2)
2x1 uint8 array
6
2

See also
bitany, all, bitand

bitand

Bitwise AND.

Syntax
c = bitand(a, b)

LME Reference — logical functions 391

Description
Each bit of the result is the binary AND of the corresponding bits of the
inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If the input arguments are of type double, so is the result,
and the operation is performed on 32 bits.

Examples
bitand(1,3)
1

bitand(1:6,1)
1 0 1 0 1 0

bitand(7uint8, 1234int16)
2int16

See also
bitor, bitxor, bitall, bitget

bitany

Check whether any of the corresponding bits is true.

Syntax
v = bitany(A)
v = bitany(A,dim)
b = bitany(v)

Description
bitany(A) performs a bitwise OR on the elements of the columns of
array A, or the elements of a vector. If a second argument dim is
provided, the operation is performed along that dimension. A can be
a double or an integer array. For double arrays, bitany uses the 32
least-significant bits.

Examples
bitany([5, 3])
7

bitany([0uint8, 6uint8; 3uint8, 6uint8], 2)
2x1 uint8 array
6
7

See also
bitall, any, bitor

392 Sysquake Remote ©1999-2016, Calerga Sàrl

bitcmp

Bit complement (bitwise NOT).

Syntax
b = bitcmp(i)
b = bitcmp(a, n)

Description
bitcmp(i) gives the 1-complement (bitwise NOT) of the integer i.

bitcmp(a,n), where a is an integer or a double, gives the
1-complement of the n least-significant bits. The result has the same
type as a.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If a is of type double, so is the result, and the operation is
performed on at most 32 bits.

Examples
bitcmp(1,4)
14

bitcmp(0, 1:8)
1 3 7 15 31 63 127 255

bitcmp([0uint8, 1uint8, 255uint8])
1x3 uint8 array
255 254 0

See also
bitxor, operator ˜

bitget

Bit extraction.

Syntax
b = bitget(a, n)

Description
bitget(a, n) gives the n:th bit of integer a. a can be an integer or
a double. The result has the same type as a. n=1 corresponds to the
least significant bit.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If a is of type double, so is the result, and n is limited to 32.

LME Reference — logical functions 393

Examples
bitget(123,5)
1

bitget(7, 1:8)
1 1 1 0 0 0 0 0

bitget(5uint8, 2)
0uint8

See also
bitset, bitand, bitshift

bitor

Bitwise OR.

Syntax
c = bitor(a, b)

Description
The input arguments are converted to 32-bit unsigned integers; each
bit of the result is the binary OR of the corresponding bits of the inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If the input arguments are of type double, so is the result,
and the operation is performed on 32 bits.

Examples
bitor(1,2)
3

bitor(1:6,1)
1 3 3 5 5 7

bitor(7uint8, 1234int16)
1239int16

See also
bitand, bitxor, bitany, bitget

bitset

Bit assignment.

Syntax
b = bitset(a, n)
b = bitset(a, n, v)

394 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
bitset(a,n) sets the n:th bit of integer a to 1. a can be an integer or
a double. The result has the same type as a. n=1 corresponds to the
least significant bit. With 3 input arguments, bitset(a,n,v) sets the
bit to 1 if v is nonzero, or clears it if v is zero.

The inputs can be scalar, arrays of the same size, or a mix of them.
If a is of type double, so is the result, and n is limited to 32.

Examples
bitset(123,10)
635

bitset(123, 1, 0)
122

bitset(7uint8, 1:8)
1x8 uint8 array
7 7 7 15 23 39 71 135

See also
bitget, bitand, bitor, bitxor, bitshift

bitshift

Bit shift.

Syntax
b = bitshift(a, shift)
b = bitshift(a, shift, n)

Description
The first input argument is converted to a 32-bit unsigned integer, and
shifted by shift bits, to the left if shift is positive or to the right if it
is negative. With a third argument n, only n bits are retained.

The inputs can be scalar, arrays of the same size, or a mix of both.

Examples
bitshift(1,3)
8

bitshift(8, -2:2)
2 4 8 16 32

bitshift(15, 0:3, 4)
15 14 12 8

See also
bitget

LME Reference — logical functions 395

bitxor

Bitwise exclusive OR.

Syntax
c = bitxor(a, b)

Description
The input arguments are converted to 32-bit unsigned integers; each
bit of the result is the binary exclusive OR of the corresponding bits of
the inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array.

Examples
bitxor(1,3)
2

bitxor(1:6,1)
0 3 2 5 4 7

bitxor(7uint8, 1234int16)
1237int16

See also
bitcmp, bitand, bitor, bitget

false

Boolean constant false.

Syntax
b = false
B = false(n)
B = false(n1, n2, ...)
B = false([n1, n2, ...])

Description
The boolean constant false can be used to set the value of a variable.
It is equivalent to logical(0). The constant 0 is equivalent in many
cases; indices (to get or set the elements of an array) are an important
exception.

With input arguments, false builds a logical array whose elements
are false. The size of the array is specified by one integer for a square
matrix, or several integers (either as separate arguments or in a vec-
tor) for an array of any size.

396 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
false
false

islogical(false)
true

false(2,3)
F F F
F F F

See also
true, logical, zeros

graycode

Conversion to Gray code.

Syntax
g = graycode(n)

Description
graycode(n) converts the integer number n to Gray code. The argu-
ment n can be an integer number of class double (converted to an
unsigned integer) or any integer type. If it is an array, conversion is
performed on each element. The result has the same type and size as
the input.

Gray code is an encoding which maps each integer of s bits to
another integer of s bits, such that two consecutive codes (i.e.
graycode(n) and graycode(n+1) for any n) have only one bit which
differs.

Example
graycode(0:7)
0 1 3 2 6 7 5 4

See also
igraycode

igraycode

Conversion from Gray code.

Syntax
n = igraycode(g)

LME Reference — logical functions 397

Description
igraycode(n) converts the Gray code g to the corresponding integer.
It is the inverse of graycode. The argument n can be an integer num-
ber of class double (converted to an unsigned integer) or any integer
type. If it is an array, conversion is performed on each element. The
result has the same type and size as the input.

Example
igraycode(graycode(0:7))
0 1 2 3 4 5 6 7

See also
graycode

islogical

Test for a boolean object.

Syntax
b = islogical(obj)

Description
islogical(obj) is true if obj is a logical value, and false otherwise.
The result is always a scalar, even if obj is an array. Logical values are
obtained with comparison operators, logical operators, test functions,
and the function logical.

Examples
islogical(eye(10))
false

islogical(̃ eye(10))
true

See also
logical, isnumeric, isinteger, ischar

logical

Transform a number into a boolean.

Syntax
B = logical(A)

398 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
logical(x) converts array or number A to logical (boolean) type. All
nonzero elements of A are converted to true, and zero elements to
false.

Logical values are stored as 0 for false or 1 for true in unsigned
8-bit integers. They differ from the uint8 type when they are used to
select the elements of an array or list.

Examples
a=1:3; a([1,0,1])
Index out of range
a=1:3; a(logical([1,0,1]))
1 3

See also
islogical, uint8, double, char, setstr, operator ()

true

Boolean constant true.

Syntax
b = true
B = true(n)
B = true(n1, n2, ...)
B = true([n1, n2, ...])

Description
The boolean constant true can be used to set the value of a variable.
It is equivalent to logical(1). The constant 1 is equivalent in many
cases; indices (to get or set the elements of an array) are an important
exception.

With input arguments, true builds a logical array whose elements
are true. The size of the array is specified by one integer for a square
matrix, or several integers (either as separate arguments or in a vec-
tor) for an array of any size.

Examples
true
true

islogical(true)
true

true(2)
T T
T T

LME Reference — dynamical system functions 399

See also
false, logical, ones

xor

Exclusive or.

Syntax
b3 = xor(b1,b2)

Description
xor(b1,b2) performs the exclusive or operation between the corre-
sponding elements of b1 and b2. b1 and b2 must have the same size
or one of them must be a scalar.

Examples
xor([false false true true],[false true false true])
F T T F

xor(pi,8)
false

See also
operator &, operator |

5.28 Dynamical System Functions

This section describes functions related to linear time-invariant dy-
namical systems.

c2dm

Continuous-to-discrete-time conversion.

Syntax
(numd,dend) = c2dm(numc,denc,Ts)
dend = c2dm(numc,denc,Ts)
(numd,dend) = c2dm(numc,denc,Ts,method)
dend = c2dm(numc,denc,Ts,method)
(Ad,Bd,Cd,Dd) = c2dm(Ac,Bc,Cc,Dc,Ts,method)

400 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
(numd,dend) = c2dm(numc,denc,Ts) converts the continuous-time
transfer function numc/denc to a discrete-time transfer function
numd/dend with sampling period Ts. The continuous-time transfer
function is given by two polynomials in s, and the discrete-time
transfer function is given by two polynomials in z, all as vectors of
coefficients with highest powers first.

c2dm(numc,denc,Ts,method) uses the specified conversion
method. method is one of
’zoh’ or ’z’ zero-order hold (default)
’foh’ or ’f’ first-order hold
’tustin’ or ’t’ Tustin (bilinear transformation)
’matched’ or ’m’ Matched zeros, poles and gain

The input and output arguments numc, denc, numd, and dend can
also be matrices; in that case, the conversion is applied separately on
each row with the same sampling period Ts.

c2dm(Ac,Bc,Cc,Dc,Ts,method) performs the conversion from
continuous-time state-space model (Ac,Bc,Cc,Dc) to discrete-time
state-space model (Ad,Bd,Cd,Dd), defined by

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

and

(k + 1) = Ad(k) + Bd(k)
y(k) = Cd(k) + Dd(k)

Method ’matched’ is not supported for state-space models.

Examples
(numd, dend) = c2dm(1, [1, 1], 0.1)
numd =
0.0952

dend =
1 -0.9048

(numd, dend) = c2dm(1, [1, 1], 0.1, ’foh’)
numd =
0.0484

dend =
1 -0.9048

(numd, dend) = c2dm(1, [1, 1], 0.1, ’tustin’)
numd =

LME Reference — dynamical system functions 401

0.0476 0.0476
dend =
1 -0.9048

See also
d2cm

d2cm

Discrete-to-continuous-time conversion.

Syntax
(numc,denc) = d2cm(numd,dend,Ts)
denc = d2cm(numd,dend,Ts)
(numc,denc) = d2cm(numd,dend,Ts,method)
denc = d2cm(numd,dend,Ts,method)

Description
(numc,denc) = d2cm(numd,dend,Ts,method) converts the
discrete-time transfer function numd/dend with sampling period Ts to
a continuous-time transfer function numc/denc. The continuous-time
transfer function is given by two polynomials in s, and the
discrete-time transfer function is given by two polynomials in z, all as
vectors of coefficients with highest powers first.

Method is
’tustin’ or ’t’ Tustin (bilinear transformation) (default)

The input and output arguments numc, denc, numd, and dend can
also be matrices; in that case, the conversion is applied separately on
each row with the same sampling period Ts.

d2cm(Ad,Bd,Cd,Dd,Ts,method) performs the conversion from
discrete-time state-space model (Ad,Bd,Cd,Dd) to continuous-time
state-space model (Ac,Bc,Cc,Dc), defined by

(k + 1) = Ad(k) + Bd(k)
y(k) = Cd(k) + Dd(k)

and

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

402 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
(numd, dend) = c2dm(1, [1, 1], 5, ’t’)
numd =
0.7143 0.7143

dend =
1 0.4286

(numc, denc) = d2cm(numd, dend)
numc =
-3.8858e-17 1

denc =
1 1

See also
c2dm

dmargin

Robustness margins of a discrete-time system.

Syntax
(gm,psi,wc,wx) = dmargin(num,den,Ts)
(gm,psi,wc,wx) = dmargin(num,den)

Description
The open-loop discrete-time transfer function is given by the two poly-
nomials num and den, with sampling period Ts (default value is 1). If
the closed-loop system (with negative feedback) is unstable, all out-
put arguments are set to an empty matrix. Otherwise, dmargin calcu-
lates the gain margins gm, which give the interval of gain for which
the closed-loop system remains stable; the phase margin psi, al-
ways positive if it exists, which defines the symmetric range of phases
which can be added to the open-loop system while keeping the closed-
loop system stable; the critical frequency associated to the gain mar-
gins, where the open-loop frequency response intersects the real axis
around -1; and the cross-over frequency associated to the phase mar-
gin, where the open-loop frequency response has a unit magnitude.
If the Nyquist diagram does not cross the unit circle, psi and wx are
empty.

Examples
Stable closed-loop, Nyquist inside unit circle:

(gm,psi,wc,wx) = dmargin(0.005,poly([0.9,0.9]))
gm = [-2, 38]

LME Reference — dynamical system functions 403

psi = []
wc = [0, 0.4510]
wx = []

Stable closed-loop, Nyquist crosses unit circle:

(gm,psi,wc,wx) = dmargin(0.05,poly([0.9,0.9]))
gm = [-0.2, 3.8]
psi = 0.7105
wc = [0, 0.4510]
wx = 0.2112

Unstable closed-loop:

(gm,psi,wc,wx) = dmargin(1,poly([0.9,0.9]))
gm = []
psi = []
wc = []
wx = []

Caveats
Contrary to many functions, dmargin cannot be used with several
transfer functions simultaneously, because not all of them may cor-
respond simultaneously to either stable or unstable closed-loop sys-
tems.

See also
margin

margin

Robustness margins of a continuous-time system.

Syntax
(gm,psi,wc,wx) = margin(num,den)

Description
The open-loop continuous-time transfer function is given by the two
polynomials num and den. If the closed-loop system (with negative
feedback) is unstable, all output arguments are set to an empty ma-
trix. Otherwise, margin calculates the gain margins gm, which give the
interval of gain for which the closed-loop system remains stable; the
phase margin psi, always positive if it exists, which defines the sym-
metric range of phases which can be added to the open-loop system

404 Sysquake Remote ©1999-2016, Calerga Sàrl

while keeping the closed-loop system stable; the critical frequency as-
sociated to the gain margins, where the open-loop frequency response
intersects the real axis around -1; and the cross-over frequency asso-
ciated to the phase margin, where the open-loop frequency response
has a unit magnitude. If the Nyquist diagram does not cross the unit
circle, psi and wx are empty.

Examples
Stable closed-loop, Nyquist inside unit circle:

(gm,psi,wc,wx) = margin(0.5,poly([-1,-1,-1]))
gm = [-2, 16]
psi = []
wc = [0, 1.7321]
wx = []

Stable closed-loop, Nyquist crosses unit circle:

(gm,psi,wc,wx) = margin(4,poly([-1,-1,-1]))
gm = [-0.25 2]
psi = 0.4737
wc = [0, 1.7321]
wx = 1.2328

Unstable closed-loop:

(gm,psi,wc,wx) = margin(10,poly([-1,-1,-1]))
gm = []
psi = []
wc = []
wx = []

Caveats
Contrary to many functions, margin cannot be used with several trans-
fer functions simultaneously, because not all of them may correspond
simultaneously to either stable or unstable closed-loop systems.

See also
dmargin

movezero

Change the position of a real or complex zero in a real-coefficient poly-
nomial.

LME Reference — dynamical system functions 405

Syntax
pol2 = movezero(pol1, p0, p1)
(pol2, p1actual) = movezero(pol1, p0, p1)

Description
movezero should be used in the mousedrag handle when the user
drags the zero of a polynomial with real coefficients. It insures a con-
sistent user experience.

If p0 is a real or complex zero of the polynomial pol1, movezero
computes a new polynomial pol2, with real coefficients, a zero at p1,
and most other zeros unchanged. If p0 and p1 are real,

pol2 = conv(deconv(pol1, [1, -p0]), [1, -p1])

If p0 and p1 are complex and their imaginary part has the same sign,

pol2 = conv(deconv(pol1, poly([p0,conj(p0)])), ...
poly([p1,conj(p1)]))

Otherwise, a real pole p0 is moved to complex pole p1 if imag(p1) >
0 and there is another real pole in pol0. A complex pole p0 can be
moved to real(p1) if imag(p1)*imag(p0) < 0; in that case,
conj(p0) is moved to real(p0).

If it exists, the second output argument is set to the actual value
of the displaced pole. It can be used to provide feedback to the user
during the drag.

Examples
roots(movezero(poly([1,3,2+3j,2-3j]),1,5))
5
3
2+3j
2-3j

roots(movezero(poly([1,3,2+3j,2-3j]),1,2j))
2j
-2j
2+3j
2-3j

roots(movezero(poly([1,3,2+3j,2-3j]),2+3j,5+8j))
1
3
5+8j
5-8j

roots(movezero(poly([1,3,2+3j,2-3j]),2+3j,5-8j))
1
3
5

406 Sysquake Remote ©1999-2016, Calerga Sàrl

2
(pol, newPole) = movezero(poly([1,3,2+3j,2-3j]),2+3j,5-8j);
newPole
5

See also
roots, conv, deconv

ss2tf

Conversion from state space to transfer function.

Syntax
(num,den) = ss2tf(A,B,C,D)
den = ss2tf(A,B,C,D)
(num,den) = ss2tf(A,B,C,D,iu)
den = ss2tf(A,B,C,D,iu)

Description
A continuous-time linear time-invariant system can be represented by
the state-space model

d

dt
(t) = A(t) + B(t)

y(t) = C(t) + D(t)

where (t) is the state, (t) the input, y(t) the output, and ABCD
four constant matrices which characterize the model. If it is a single-
input single-output system, it can also be represented by its transfer
function num/den. (num,den) = ss2tf(A,B,C,D) converts the model
from state space to transfer function. If the state-space model has
multiple outputs, num is a matrix whose lines correspond to each out-
put (the denominator is the same for all outputs). If the state-space
model has multiple inputs, a fifth input argument is required and spec-
ifies which one to consider.

For a sampled-time model, exactly the same function can be used.
The derivative is replaced by a forward shift, and the variable s of the
Laplace transform is replaced by the variable z of the z transform. But
as long as coefficients are concerned, the conversion is the same.

The degree of the denominator is equal to the number of states,
i.e. the size of A. The degree of the numerator is equal to the number
of states if D is not zero, and one less if D is zero.

If D is zero, it can be replaced by the empty matrix [].

LME Reference — dynamical system functions 407

Example
Conversion from the state-space model d/dt = − + , y = to the
transfer function Y(s)/U(s) = 1/(s + 1):

(num, den) = ss2tf(-1, 1, 1, 0)
num =
1

den =
1 1

See also
tf2ss

tf2ss

Conversion from transfer function to state space.

Syntax
(A,B,C,D) = tf2ss(num,den)

Description
tf2ss(num,den) returns the state-space representation of the trans-
fer function num/den, which is given as two polynomials. The transfer
function must be causal, i.e. num must not have more columns than
den. Systems with several outputs are specified by a num having one
row per output; the denominator den must be the same for all the
outputs.

tf2ss applies to continuous-time systems (Laplace transform) as
well as to discrete-time systems (z transform or delta transform).

Example
(A,B,C,D) = tf2ss([2,5],[2,3,8])
A =
-1.5 -4
1 0

B =
1
0

C =
1 2.5

D =
0

See also
ss2tf, zp2ss

408 Sysquake Remote ©1999-2016, Calerga Sàrl

zp2ss

Conversion from transfer function given by zeros and poles to state
space.

Syntax
(A,B,C,D) = zp2ss(z,p,k)

Description
zp2ss(z,p,k) returns the state-space representation of the transfer
function with zeros z, poles p and gain k (ratio of leading coefficients
of numerator and denominator in decreasing powers). The transfer
function must be causal, i.e. the number of zeros must not be larger
than the number of poles. zp2ss supports only systems with one input
and one output. Complex zeros and complex poles must make com-
plex conjugate pairs, so that the corresponding polynomials have real
coefficients.

zp2ss applies to continuous-time systems (Laplace transform) as
well as to discrete-time systems (z transform or delta transform).

Example
(A,B,C,D) = zp2ss([1;2],[3;4-1j;4+1j],5)
A =
8 -17 1
1 0 0
0 0 3

B =
0
0
1

C =
25 -75 5

D =
0

See also
tf2ss

5.29 Input/Output Functions

bwrite

Store data in an array of bytes.

LME Reference — input/output 409

Syntax
s = bwrite(data)
s = bwrite(data, precision)

Description
bwrite(data) stores the contents of the matrix data into an array of
class uint8. The second parameter is the precision, whose meaning
is the same as for fread. Its default value is ’uint8’.

Examples
bwrite(12345, ’uint32;l’)
1x4 uint8 array
57 48 0 0

bwrite(12345, ’uint32;b’)
1x4 uint8 array

0 0 48 57

See also
swrite, sread, fwrite, sprintf, typecast

clc

Clear the text window or panel.

Syntax
clc
clc(fd)

Description
clc (clear console) clears the contents of the command-line window
or panel.

clc(fd) clears the contents of the window or panel associated with
file descriptor fd.

disp

Simple display on the standard output.

Syntax
disp(obj)
disp(obj, fd=fd)

410 Sysquake Remote ©1999-2016, Calerga Sàrl

Description

disp(obj) displays the object obj. Command format may be used to
control how numbers are formatted.

With named argument fd, disp(obj,fd=fd) writes obj to the file
descriptor fd.

Example
disp(’hello’)
hello

See also

format, fprintf

fclose

Close a file.

Syntax
fclose(fd)
fclose(’all’)

Description

fclose(fd) closes the file descriptor fd which was obtained with
functions such as fopen. Then fd should not be used anymore.
fclose(’all’) closes all the open file descriptors.

feof

Check end-of-file status.

Syntax
b = feof(fd)

Description

feof(fd) is false if more data can be read from file descriptor fd, and
true if the end of the file has been reached.

LME Reference — input/output 411

Example
Count the number of lines and characters in a file (fopen and fclose
are not available in all LME applications):

fd = fopen(’data.txt’);
lines = 0;
characters = 0;
while f̃eof(fd)
str = fgets(fd);
lines = lines + 1;
characters = characters + length(str);

end
fclose(fd);

See also
ftell

fflush

Flush the input and output buffers.

Syntax
fflush(fd)

Description
fflush(fd) discards all the data in the input buffer and forces data
out of the output buffer, when the device and their driver permits it.
fflush can be useful to recover from errors.

fgetl

Reading of a single line.

Syntax
line = fgetl(fd)
line = fgetl(fd, n)

Description
A single line (of at most n characters) is read from a text file. The end
of line character is discarded. Upon end of file, fgetl gives an empty
string.

See also
fgets, fscanf

412 Sysquake Remote ©1999-2016, Calerga Sàrl

fgets

Reading of a single line.

Syntax
line = fgets(fd)
line = fgets(fd, n)

Description

A single line (of at most n characters) is read from a text file. Unless
the end of file is encountered before, the end of line (always a single
line feed) is preserved. Upon end of file, fgets gives an empty string.

See also

fgetl, fscanf

fionread

Number of bytes which can be read without blocking.

Syntax
n = fionread(fd)

Description

fionread(fd) returns the number of bytes which can be read without
blocking. For a file, all the data until the end of the file can be read;
but for a device or a network connection, fionread gives the number
of bytes which have already been received and are stored in the read
buffer.

If the number of bytes cannot be determined, fionread returns -1.

See also

fread

format

Default output format.

LME Reference — input/output 413

Syntax

format
format short
format short e
format short eng
format short g
format long
format long e
format long eng
format long g
format int
format int d
format int u
format int x
format int o
format int b
format bank
format rat
format ’+’
format i
format j
format loose
format compact

Description

format changes the format used by command disp and for output
produced with expressions which do not end with a semicolon. The
following arguments are recognized:

414 Sysquake Remote ©1999-2016, Calerga Sàrl

Arguments Meaning
(none) fixed format with 0 or 4 digits, loose spacing
short fixed format with 0 or 4 digits
short e exponential format with 4 digits
short eng engineering format with 4 digits
short g general format with up to 4 digits
long fixed format with 0 or 15 digits
long e exponential format with 15 digits
long eng engineering format with 15 digits
long g general format with up to 15 digits
int signed decimal integer
int d signed decimal integer
int u unsigned decimal integer
int x hexadecimal integer
int o octal integer
int b binary integer
bank fixed format with 2 digits (for currencies)
rat rational approximation
+ ’+’, ’-’ or ’I’ for nonzero, space for zero
i symbol i to represent the imaginary unit
j symbol j to represent the imaginary unit
loose empty lines to improve readability
compact no empty line

Format for numbers, for imaginary unit symbol and for spacing is
set separately. Format rat displays rational approximations like rat
with the default tolerance, but also displays the imaginary part if it
exists. Format ’+’ displays compactly numeric and boolean arrays:
positive numbers and complex numbers with a positive real part are
displayed as +, negative numbers or complex numbers with a negative
real part as -, pure imaginary nonzero numbers as I, and zeros as
spaces.

The default format is format short g, format j, and format
compact.

See also
disp, fprintf, rat

fprintf

Formatted output.

Syntax
n = fprintf(fd,format,a,b,...)
n = fprintf(format,a,b,...)
n = fprintf(..., fd=fd, NPrec=nPrec)

LME Reference — input/output 415

Description
fprintf(format,a,b,...) converts its arguments to a string and
writes it to the standard output.

fprintf(fd,format,a,b,...) specifies the output file descriptor.
The file descriptor can also be specified as a named argument fd.

In addition to fd, fprintf also accepts named argument NPrec for
the default number of digits in floating-point numbers.

See sprintf for a description of the conversion process.

Example
fprintf(’%d %.2f %.3E %g\n’,1:3,pi)
1 2.00 3.000E0 3.1416
22

See also
sprintf, fwrite

fread

Raw input.

Syntax
(a, count) = fread(fd)
(a, count) = fread(fd, size)
(a, count) = fread(fd, size, precision)

Description
fread(fd) reads signed bytes from the file descriptor fd until it
reaches the end of file. It returns a column vector whose elements
are signed bytes (between -128 and 127), and optionally in the
second output argument the number of elements it has read.

fread(fd,size) reads the number of bytes specified by size. If
size is a scalar, that many bytes are read and result in a column
vector. If size is a vector of two elements [m,n], m*n elements are
read row by row and stored in an m-by-n matrix. If the end of the file
is reached before the specified number of elements have been read,
the number of rows is reduced without throwing an error. The optional
second output argument always gives the number of elements in the
result. If size is the empty array [], elements are read until the end
of the file; it must be specified if there is a third argument.

With a third argument, fread(fd,size,precision) reads integer
words of 1, 2, or 4 bytes, or IEEE floating-point numbers of 4 bytes
(single precision) or 8 bytes (double precision). The meaning of the
string precision is described in the table below.

416 Sysquake Remote ©1999-2016, Calerga Sàrl

precision meaning
int8 signed 8-bit integer (-128 ≤ x ≤ 127)
char signed 8-bit integer (-128 ≤ x ≤ 127)
int16 signed 16-bit integer (-32768 ≤ x ≤ 32767)
int32 signed 32-bit integer (-2147483648 ≤ x ≤ 2147483647)
int64 signed 64-bit integer (-9.223372e18 ≤ x ≤ 9.223372e18)
uint8 unsigned 8-bit integer (0 ≤ x ≤ 255)
uchar unsigned 8-bit integer (0 ≤ x ≤ 255)
uint16 unsigned 16-bit integer (0 ≤ x ≤ 65535)
uint32 unsigned 32-bit integer (0 ≤ x ≤ 4294967295)
uint64 unsigned 64-bit integer (0 ≤ x ≤ 18.446744e18)
single 32-bit IEEE floating-point
double 64-bit IEEE floating-point

By default, multibyte words are encoded with the least significant
byte first (little endian). The characters ’;b’ can be appended to spec-
ify that they are encoded with the most significant byte first (big en-
dian); for symmetry, ’;l’ is accepted and ignored.

By default, the output is a double array. To get an output which has
the same type as what is specified by precision, the character * can
be inserted at the beginning. For instance ’*uint8’ reads bytes and
stores them in an array of class uint8, ’*int32;b’ reads signed 32-
bit words and stores them in an array of class int32 after performing
byte swapping if necessary, and ’*char’ reads bytes and stores them
in a character row vector (i.e. a plain string).

Precisions ’int64’ and ’uint64’ are supported only if types int64
and uint64 are supported.

See also
fwrite, sread

frewind

Rewind current read or write position in a file.

Syntax
frewind(fd)

Description
frewind(fd) sets the position in an open file where the next
input/output commands will read or write data to the beginning of the
file. The argument fd is the file descriptor returned by fopen or
similar functions (fopen is not available in all LME applications).

frewind(fd) has the same effect as fseek(fd,0) or
fseek(fd,0,’b’).

LME Reference — input/output 417

See also

fseek, ftell

fscanf

Reading of formatted numbers.

Syntax
r = fscanf(fd, format)
(r, count) = fscanf(fd, format)

Description

A single line is read from a text file, and numbers, characters and
strings are decoded according to the format string. The format string
follows the same rules as sscanf.

The optional second output argument is set to the number of ele-
ments decoded successfully (may be different than the length of the
first argument if decoding strings).

Example

Read a number from a file (fopen and fclose are not available in all
LME applications):

fd = fopen(’test.txt’, ’rt’);
fscanf(fd, ’%f’)
2.3

fclose(fd);

See also

sscanf

fseek

Change the current read or write position in a file.

Syntax
status = fseek(fd, position)
status = fseek(fd, position, mode)

418 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
fseek(fd,position,mode) changes the position in an open file where
the next input/output commands will read or write data. The first ar-
gument fd is the file descriptor returned by fopen or similar functions
(fopen is not available in all LME applications). The second argument
is the new position. The third argument mode specifies how the posi-
tion is used:
b absolute position from the beginning of the file
c relative position from the current position
e offset from the end of the file (must be ≤ 0)

The default value is ’b’. Only the first character is checked, so
’beginning’ is a valid alternative for ’b’. fseek returns 0 if success-
ful or -1 if the position is outside the limits of the file contents.

See also
frewind, ftell

ftell

Get the current read or write position in a file.

Syntax
position = ftell(fd)

Description
ftell(fd) gives the current file position associated with file descriptor
fd. The file position is the offset (with respect to the beginning of
the file) at which the next input function will read or the next output
function will write. The offset is expressed in bytes. With text files,
ftell may not always correspond to the number of characters read or
written.

See also
fseek, feof

fwrite

Raw output.

Syntax
count = fwrite(fd, data)
count = fwrite(fd, data, precision)

LME Reference — input/output 419

Description
fwrite(fd, data) writes the contents of the matrix data to the out-
put referenced by the file descriptor fd. The third parameter is the
precision, whose meaning is the same as for fread. Its default value
is ’uint8’.

See also
fread, swrite, bwrite

redirect

Redirect or copy standard output or error to another file descriptor.

Syntax
redirect(fd, fdTarget)
redirect(fd, fdTarget, copy)
redirect(fd)
R = redirect(fd)
redirect
R = redirect

Description
redirect(fd,fdTarget) redirects output from file descriptor fd to
fdTarget. fd must be 1 for standard output or 2 for standard error. If
fdTarget==fd, the normal behavior is restored.

redirect(fd,fdTarget,copy) copies output to both fd and
fdTarget if copy is true, instead of redirecting it only to fdTarget. If
copy is false, the result is the same as with two input arguments.

With zero or one input argument and without output argument,
redirect displays the current redirection for the specified file descrip-
tor (1 or 2) or for both of them. Note that the redirection itself may
alter where the result is displayed.

With an output argument, redirect returns a 1-by-2 row vector if
the file descriptor is specified, or a 2-by-2 matrix otherwise. The first
column contains the target file descriptor and the second column, 1
for copy mode and 0 for pure redirection mode.

Examples
Create a new file diary.txt and copy to it both standard output and
error:

fd = fopen(’diary.txt’, ’w’);
redirect(1, fd, true);
redirect(2, fd, true);

420 Sysquake Remote ©1999-2016, Calerga Sàrl

Stop copying standard output and error and close file:

redirect(1, 1);
redirect(2, 2);
fclose(fd);

Redirect standard error to standard output and get the redirection
state:

redirect(2, 1)
redirect
stdout (fd=1) -> fd=1
stderr (fd=2) -> fd=1

redirect(2)
stderr (fd=2) -> fd=1

R = redirect
R =
1 0
1 0

R = redirect(2)
R =
1 0

sprintf

Formatted conversion of objects into a string.

Syntax
s = sprintf(format,a,b, ...)
s = sprintf(..., NPrec=nPrec)

Description
sprintf converts its arguments to a string. The first parameter is
the format string. All the characters are copied verbatim to the out-
put string, except for the control sequences which all begin with the
character ’%’. They have the form

%fn.dt

where f is zero, one or more of the following flags:

Flag Meaning
- left alignment (default is right alignment)
+ display of a + sign for positive numbers
0 zero padding instead of spaces
alternate format (see below)
space sign replaced with space for positive numbers

LME Reference — input/output 421

n is the optional width of the field as one or more decimal digits
(default is the minimum width to display the data).

d is the number of digits after the decimal separator for a number
displayed with a fractional part (default is 4 or what is specified by
named argument NPrec), the minimum number of displayed digits for
a number displayed as an integer, or the number of characters for a
string (one or more decimal digits).

t is a single character denoting the type of conversion. In most
cases, each control sequence corresponds to an additional argument.

All elements of arrays are used sequentially as if they were pro-
vided separately; strings are used as a whole. The table below gives
the valid values of t.

Char. Conversion
% single %
d decimal number as an integer
i same as d
x hexadecimal number (for integers between 0 and 2̂ 32-1)
X same as x, with uppercase digits
o octal number (for integers between 0 and 2̂ 32-1)
f fixed number of decimals (exp. notation if abs(x)>1e18)
F same as f, with an uppercase E
e scientific notation such as 1e5
E scientific notation such as 1E5
n engineering notation such as 100e3
N engineering notation such as 100E3
g decimal or scientific notation
G same as g, with an uppercase E
k same as g, with as few characters as possible
K same as k, with an uppercase E
P SI prefix (k=1e3, u=1e-6) or engineering notation
c character
s string

The # flag forces octal numbers to begin with 0, nonzero hexadec-
imal numbers to begin with 0x, and floating-point numbers to always
have a decimal point even if they do not have a fractional part.

Integer formats %d, %i, %o and %x round fractional numbers to the
nearest integer.

Instead of decimal digits, the width n and/or the precision d can be
replaced with character *; then one or two additional arguments (or
elements of an array) are consumed and used as the width or preci-
sion.

Examples
Numbers:

422 Sysquake Remote ©1999-2016, Calerga Sàrl

sprintf(’%d %.2f %.2e %.2E %.2g’,pi*ones(1,5))
3 3.14 3.14e0 3.14E0 3.14

Compact representation with ’%k’:

sprintf(’%.1k ’, 0.001, 0.11, 111, 1000)
1e-3 0.11 111 1e3

Width and precision:

sprintf(’*%8.3f*%8.6s*%-8.6s*’,pi,’abcdefgh’,’abcdefgh’)
* 3.142* abcdef*abcdef *

Repetition of format string to convert all values:

sprintf(’%c_’,’a’:’z’)
a_b_c_d_e_f_g_h_i_j_k_l_m_n_o_p_q_r_s_t_u_v_w_x_y_z_

Width and precision provided as expressions:

sprintf(’%*.*f’, 15, 7, pi)
3.1415927

Zero padding for integer format:

sprintf(’%.3d,%.3d’, 12, 12345)
012,12345

Default precision:

sprintf(’%f %e’, pi, pi)
3.1416 3.1416e0

sprintf(’%f %e’, pi, pi, NPrec=2)
3.14 3.14e0

See also
fprintf, sscanf, swrite

sread

Raw input from a string or an array of bytes.

Syntax
(a, count) = sread(str, size, precision)
(a, count) = sread(str, [], precision)
(a, count) = sread(bytes, ...)

Description
sread(str) reads data from string str or array of class uint8 or int8
the same way as fread reads data from a file.

LME Reference — input/output 423

Examples

(data, count) = sread(’abc’)
data =
97
98
99

count =
3

(data, count) = sread(’abcdef’,[2,2])
data =
97 98
99 100

count =
4

(data, count) = sread(’abcd’,[inf,3])
data =
97 98 99

count =
3

See also

swrite, bwrite, fread, typecast

sscanf

Decoding of formatted numbers.

Syntax

r = sscanf(str, format)
(r, count) = scanf(str, format)
(r, count, nchar) = scanf(str, format)

Description

Numbers, characters and strings are extracted from the first argu-
ment. Exactly what is extracted is controlled by the second argument,
which can contain the following elements:

424 Sysquake Remote ©1999-2016, Calerga Sàrl

Substring in format Meaning
%c single character
%s string
%d integer number in decimal
%x unsigned integer number in hexadecimal
%o unsigned integer number in octal
%i integer number
%f floating-point number
%e floating-point number
%g floating-point number
%% %
other character exact match

%i recognizes an optional sign followed by a decimal number, an
hexadecimal number prefixed with 0x or 0X, a binary number prefixed
with 0b or 0B, or an octal number prefixed with 0.

The decoded elements are accumulated in the output argument,
either as a column vector if the format string contains %d, %o, %x, %i,
%f, %e or %g, or a string if the format string contains only %c, %s or
literal values. If a star is inserted after the percent character, the
value is decoded and discarded. A width (as one or more decimal
characters) can be inserted before s, d, x, o, i, f, e or g; it limits the
number of characters to be decoded. In the input string, spaces and
tabulators are skipped before decoding %s, %d, %x, %o, %i, %f, %e or %g.

The format string is recycled as many times as necessary to de-
code the whole input string. The decoding is interrupted if a mismatch
occurs.

The optional second output argument is set to the number of ele-
ments decoded successfully (may be different than the length of the
first argument if decoding strings). The optional third output argument
is set to the number of characters which were consumed in the input
string.

Examples
sscanf(’f(2.3)’, ’f(%f)’)
2.3

sscanf(’12a34x778’, ’%d%c’)
12
97
34

120
778
sscanf(’abc def’, ’%s’)
abcdef
sscanf(’abc def’, ’%c’)
abc def
sscanf(’12,34’,’%*d,%d’)

LME Reference — file system 425

34
sscanf(’0275a0ff’, ’%2x’)

2
117
160
255

See also
sprintf

swrite

Store data in a string.

Syntax
s = swrite(data)
s = swrite(data, precision)

Description
swrite(data) stores the contents of the matrix data into a string. The
second parameter is the precision, whose meaning is the same as for
fread. Its default value is ’uint8’.

Examples
swrite(65:68)
ABCD

double(swrite([1,2], ’int16’))
1 0 2 0

double(swrite([1,2], ’int16;b’))
0 1 0 2

See also
bwrite, fwrite, sprintf, sread

5.30 File System Functions

Access to any kind of file can be useful to analyze data which come
from other applications (such as experimental data) and to generate
results in a form suitable for other applications (such as source code
or HTML files). Functions specific to files are described in this sec-
tion. Input, output, and control are done with the following generic
functions:

426 Sysquake Remote ©1999-2016, Calerga Sàrl

Function Description
fclose close the file
feof check end of file status
fflush flush I/O buffers
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
frewind reset the current I/O position
fscanf read formatted data
fseek change the current I/O position
ftell get the current I/O position
fwrite write data
redirect redirect output

fopen

Open a file.

Syntax
fd = fopen(path)
fd = fopen(path, mode)

Description
fopen opens a file for reading and/or writing. The first argument is a
path whose format depends on the platform. If it is a plain file name,
the file is located in the current directory; what "current" means also
depends on the operating system. The output argument, a real num-
ber, is a file descriptor which can be used by many input/output func-
tions, such as fread, fprintf, or dumpvar.

The optional second input argument, a string of one or two charac-
ters, specifies the mode. It can take one of the following values:

Mode Meaning
(none) same as ’r’
’r’ read-only, binary mode, seek to beginning
’w’ read/write, binary mode, create new file
’a’ read/write, binary mode, seek to end
’rt’ read-only, text mode, seek to beginning
’wt’ read/write, text mode, create new file
’at’ read/write, text mode, seek to end

In text mode, end-of-line characters LF, CR and CRLF are all con-
verted to LF (’\n’) on input. On output, they are converted to the
native sequence for the operating system, which is CRLF on Windows

LME Reference — path manipulation 427

and LF elsewhere. To force the output end-of-line to be LF irrespec-
tively of the operating system, use ’q’ instead of ’t’ (e.g. ’wq’ to
write to a file); to force it to be CRLF, use ’T’ (e.g. ’aT’ to append to
a file).

Examples
Reading a whole text file into a string:

fd = fopen(’file.txt’, ’rt’);
str = fread(fd, inf, ’*char’);
fclose(fd);

Reading a whole text file line by line:

fd = fopen(’file.txt’, ’rt’);
while f̃eof(fd)
str = fgets(fd)

end
fclose(fd);

Writing a matrix to a CSV (comma-separated values) text file:

M = magic(5);
fd = fopen(’file.txt’, ’wt’);
for i = 1:size(M, 1)
for j = 1:size(M, 2)-1
fprintf(fd, ’%g,’, M(i,j));

end
fprintf(fd, ’%g\n’, M(i,end));

end
fclose(fd);

Reading 5 bytes at offset 3 in a binary file, giving an 5-by-1 array of
unsigned 8-bit integers:

fd = fopen(’file.bin’);
fseek(fd, 3);
data = fread(fd, 5, ’*uint8’);
fclose(fd);

See also
fclose

5.31 Path Manipulation Functions

fileparts

File path splitting into directory, filename and extension.

428 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
(dir, filename, ext) = fileparts(path)

Description
fileparts(path) splits string path into the directory (initial part until
the last file separator), the filename without extension (substring after
the last file separator before the last dot), and the extension (substring
starting from the last dot after the last file separator).

The directory is empty if path does not contain any file separator,
and the extension is empty if the remaining substring does not contain
a dot. When these three strings are concatenated, the result is always
equal to the initial path.

The separator depends on the operating system: a slash on unix
(including Mac OS X and Linux), and a backslash or a slash on Win-
dows.

Examples
(dir, filename, ext) = fileparts(’/home/tom/report.txt’)
dir =
/home/tom/

filename =
report

ext =
.txt

(dir, filename, ext) = fileparts(’/home/tom/’)
dir =
/home/tom/

filename =
’’

ext =
’’

(dir, filename, ext) = fileparts(’results.txt.back’)
dir =
’’

filename =
results.txt

ext =
.back

See also
fullfile, filesep

filesep

File path separator.

LME Reference — XML 429

Syntax
ch = filesep

Description
filesep gives the character used as separator between directories
and files in paths. It depends on the operating system: a slash on unix
(including Mac OS X and Linux), and a backslash on Windows.

See also
fullfile, fileparts

fullfile

File path construction.

Syntax
path = fullfile(p1, p2, ...)

Description
fullfile constructs a file path by concatenating all its string argu-
ments, removing separators when missing. At least one input argu-
ment is required.

Examples
fullfile(’/home/tom/’, ’report.txt’)
/home/tom/report.txt

fullfile(’/home/tom’, ’data’, ’meas1.csv’)
/home/tom/data/meas1.csv

See also
fileparts, filesep

5.32 XML Functions

This section describes functions which import XML data. Two separate
sets of functions implement two approaches to parse XML data:

– Document Object Model (DOM): XML is loaded entirely in mem-
ory from a file (xmlread) or a character string (xmlreadstring).
Additional functions permit to traverse the DOM tree and to get
its structure, the element names and attributes and the text.

430 Sysquake Remote ©1999-2016, Calerga Sàrl

– Simple API for XML (SAX): XML is parsed from a file descriptor
(saxnew) and events are generated for document start and end,
element start and end, and character sequences.

With both approaches, creation and modification of the document are
not possible.

DOM

Two opaque types are implemented: DOM nodes (including document,
element and text nodes), and attribute lists. A document node object
is created with the functions xmlreadstring (XML string) or xmlread
(XML file or other input channel). Other DOM nodes and attribute lists
are obtained by using DOM methods and properties.

Methods and properties of DOM node objects

Method Description
fieldnames List of property names
getElementById Get a node specified by id
getElementsByTagName Get a list of all descendent nodes of the given tag name
subsref Get a property value
xmlrelease Release a document node

LME Reference — XML 431

Property Description
attributes Attribute list (opaque object)
childElementCount Number of element children
childNodes List of child nodes
children List of element child nodes
depth Node depth in document tree
documentElement Root element of a document node
firstChild First child node
firstElementChild First element child node
lastChild Last child node
lastElementChild Last element child node
line Line number in original XML document
nextElementSibling Next sibling element node
nextSibling Next sibling node
nodeName Node tag name, ’#document’, or ’#text’
nodeValue Text of a text node
offset Offset in original XML document
ownerDocument Owner DOM document node
parentNode Parent node
previousElementSibling Previous sibling element node
previousSibling Previous sibling node
textContent Concatenated text of all descendent text nodes
xml XML representation, including all children

A document node object is released with the xmlrelease method.
Once a document node object is released, all associated node objects
become invalid. Attribute lists and native LME types (strings and num-
bers) remain valid.

Methods and properties of DOM attribute list objects

Method Description
fieldnames List of attribute names
length Number of attributes
subsref Get an attribute

Properties of attribute lists are the attribute values as strings. Prop-
erties whose name is compatible with LME field name syntax can be
retrieved with the dot syntax, such as attr.id. For names containing
invalid characters, such as accented letters, or to enumerate unknown
attributes, attributes can be accessed with indexing, with either paren-
thesis or braces. The result is a structure with two fields name and
value.

432 Sysquake Remote ©1999-2016, Calerga Sàrl

SAX

XML is read from a file descriptor, typically obtained with fopen. The
next event is retrieved with saxnext which returns its description in a
structure.

getElementById

Get a node specified by id.

Syntax
node = getElementById(root, id)

Description
getElementById(root,id) gets the node which is a descendant of
node root and whose attribute id matches argument id. It throws an
error if the node is not found.

In valid XML documents, every id must be unique. If the document
is invalid, the first element with the specified id is obtained.

See also
xmlread, getElementsByTagName

getElementsByTagName

Get a list of all descendent nodes of the given tag name.

Syntax
node = getElementsByTagName(root, name)

Description
getElementsByTagName(root,name) collects a list of all the element
nodes which are direct or indirect descendants of node root and
whose name matches argument name.

Examples

doc = xmlreal(’<p>Abc de <i>fg hijk</i></p>’);
b = getElementsByTagName(doc, ’b’)
b =
{DOMNode,DOMNode}

b2 = b{2}.xml
b2 =
hijk

xmlrelease(doc);

LME Reference — XML 433

See also
xmlread, getElementById

saxcurrentline

Get current line number of SAX parser.

Syntax
n = saxcurrentline(sax)

Description
saxcurrentline(sax) gets the current line of the XML file parsed by
the SAX parser passed as argument. It can also be used after an error.

See also
saxcurrentpos, saxnew, saxnext

saxcurrentpos

Get current position in input stream of SAX parser.

Syntax
n = saxcurrentpos(sax)

Description
saxcurrentpos(sax) gets the current position of the XML file parsed
by the SAX parser passed as argument (the number of bytes con-
sumed thus far). It can also be used after an error.

The value given by saxcurrentpos differs from the result of ftell
on the file descriptor, because the SAX parser input is buffered.

See also
saxcurrentline, saxnew, saxnext

saxnew

Create a new SAX parser.

Syntax
sax = saxnew(fd)
sax = saxnew(fd, Trim=t, HTML=h)

434 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
saxnew(fd) create a new SAX parser to parse XML from file descriptor
fd. The parser is an opaque (non-numeric) type. Once it is not needed
anymore, it should be released with the saxrelease function.

Named argument Trim (a boolean value) specifies if white spaces
are trimmed around tags. The default value is false.

Named argument HTML (a boolean value) specifies HTML mode. The
default value is false (XML mode). In HTML mode, unknown entities
and less-than characters not followed by tag names are considered
as plain text, and attribute values can be missing (same as attribute
names) or unquoted. This can be used for the lowest level of a rudi-
mentary HTML parser.

Example
fd = fopen(’data.xml’);
sax = saxnew(fd);
while true
ev = saxnext(sax);
switch ev.event
case ’docBegin’
// beginning of document

case ’docEnd’
// end of document
break;

case ’elBegin’
// beginning of element ev.tag with attr ev.attr

case ’elEnd’
// end of element ev.tag

case ’elEmpty’
// empty element ev.tag with attr ev.attr

case ’text’
// text element ev.text

end
end
xmlrelease(doc);

See also
saxrelease, saxnext, xmlread

saxnext

Get next SAX event.

Syntax
event = saxnext(sax)

LME Reference — XML 435

Description
saxnext(sax) gets the next SAX event and returns its description in
a structure. Argument sax is the SAX parser created with saxnew.

The event structure contains the following fields:

event Event type as a string: ’docBegin’, ’docEnd’, ’elBegin’,
’elEnd’, ’elEmpty’, or ’text’.

tag For ’elBegin’, ’elEnd’ and ’elEmpty’, element tag.

attr For ’elBegin’ and ’elEmpty’, structure array containing the
element attributes. Each attribute is defined by two string fields,
name and value.

text For ’text’, text string.

See also
saxnew, saxcurrentline

saxrelease

Release a SAX parser.

Syntax
saxrelease(sax)

Description
saxrelease(sax) releases the SAX parser sax created with saxnew.

See also
saxnew

xmlread

Load a DOM document object from a file descriptor.

Syntax
doc = xmlread(fd)

Description
xmlread(fd) loads XML to a new DOM document node object by read-
ing a file descriptor until the end, and returns a new document node
object. The file descriptor can be closed before the document node
object is used. Once the document is not needed anymore, it should
be released with the xmlrelease method.

436 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
Load an XML file ’doc.xml’ (this assumes support for files with the
function fopen).

fd = fopen(’doc.xml’);
doc = xmlread(fd);
fclose(fd);
root = doc.documentElement;
...
xmlrelease(doc);

See also
xmlreadstring, xmlrelease, saxnew

xmlreadstring

Parse an XML string into a DOM document object.

Syntax
doc = xmlreadstring(str)

Description
xmlreadstring(str) parses XML from a string to a new DOM doc-
ument node object. Once the document is not needed anymore, it
should be released with the xmlrelease method.

Examples

xml = ’<a>one <b id="x">two <c id="y" num="3">three</c>’;
doc = xmlreadstring(xml)
doc =
DOM document

root = doc.documentElement;
root.nodeName
ans =
a

root.childNodes{1}.nodeValue
ans =
one

root.childNodes{2}.xml
ans =
<b id="x">two

a = root.childNodes{2}.attributes
a =
DOM attributes (1 item)

LME Reference — time 437

a.id
x

getElementById(doc,’y’).xml
<c id="y" num="3">three</c>

xmlrelease(doc);

See also
xmlread, xmlrelease

xmlrelease

Release a DOM document object.

Syntax
xmlrelease(doc)

Description
xmlrelease(doc) releases a DOM document object. All DOM node
objects obtained directly or indirectly from it become invalid.

Releasing a node which is not a document has no effect.

See also
xmlreadstring, xmlread

5.33 Time Functions

clock

Current date and time.

Syntax
t = clock

Description
clock returns a 1x6 row vector, containing the year (four digits), the
month, the day, the hour, the minute and the second of the current
local date and time. All numbers are integers, except for the seconds
which are fractional. The absolute precision is plus or minus one sec-
ond with respect to the computer’s clock; the relative precision is plus
or minus 1 microsecond on a Macintosh, and plus or minus 1 millisec-
ond on Windows.

438 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
clock
1999 3 11 15 37 34.9167

See also

posixtime, tic, toc

posixtime

Current Posix time.

Syntax
t = posixtime

Description

posixtime returns the Posix time, the integral number of seconds
since 1 February 1970 at 00:00:00 UTC, based on the value provided
by the operating system.

Example
posixtime
1438164887

See also

clock

tic

Start stopwatch.

Syntax
tic
t0 = tic
tic(CPUTime=true)
t0 = tic(CPUTime=true)

LME Reference — time 439

Description
Without output argument, tic resets the stopwatch. Typically, tic is
used once at the beginning of the block to be timed, and toc at the
end. toc can be called multiple times to get intermediate times.

With an output argument, tic gets the current state of the stop-
watch. Multiple independent time measurements can be performed
by passing this value to toc.

By default, tic and toc are based on the real, "wall-clock" time.
tic(CPUTime=true) is based on CPU time instead, which gives more
accurate results for non-multithreaded programs. Measurements
made with wall-clock time and CPU time are independent and can be
mixed freely.

See also
toc, clock

toc

Elapsed time of stopwatch.

Syntax
elapsed_time = toc
elapsed_time = toc(t0)
elapsed_time = toc(CPUTime=true)
elapsed_time = toc(t0, CPUTime=true)

Description
Without input argument, toc gets the time elapsed since the last ex-
ecution of tic without output argument. Typically, toc is used at the
end of the block of statements to be timed.

With an input argument, toc(t0) gets the time elapsed since the
execution of t0=tic. Multiple independent time measurements,
nested or overlapping, can be performed simultaneously.

With a named argument, toc(CPUTime=true) or
toc(t0,CPUTime=true) use CPU time: toc measures only the
time spent in the LME application. Other processes do not have
a large impact. For instance, typing tic(CPUTime=true)
at the command-line prompt, waiting 5 seconds, and typing
toc(CPUTime=true) will show a value much smaller than 5; while
typing tic and toc will show the same elapsed time a chronograph
would. CPU time is usually more accurate for non-multithreaded
code, and wall-clock time for multi-threaded code, or measurements
involving devices or network communication.

440 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
Time spent to compute the eigenvalues of a random matrix:

tic; x = eig(rand(200)); toc
0.3046

Percentage of time spent in computing eigenvalues in a larger pro-
gram:

eigTime = 0;
s = [];
tic(CPUTime=true);
for i = 1:100
A = randn(20);
eigT0 = tic(CPUTime=true);
s1 = eig(A);
eigTime = eigTime + toc(eigT0, CPUTime=true);
s = [s, s1];

end
totalTime = toc(CPUTime=true);
100 * eigTime / totalTime
78.4820

See also
tic, clock

5.34 Date Functions

Date functions perform date and time conversions between the calen-
dar date and the julian date.

The calendar date is the date of the proleptic Gregorian calendar,
i.e. the calendar used in most countries today where centennial years
are not leap unless they are a multiple of 400. This calendar was
introduced by Pope Gregory XIII on October 5, 1582 (Julian Calendar,
the calendar used until then) which became October 15. The calendar
used in this library is proleptic, which means the rule for leap years is
applied back to the past, before its introduction. Negative years are
permitted; the year 0 does exist.

The julian date is the number of days since the reference point,
January 1st -4713 B.C. (Julian calendar) at noon. The fractional part
corresponds to the fraction of day after noon: a fraction of 0.25, for
instance, is 18:00 or 6 P.M. The julian date is used by astronomers with
GMT; but using a local time zone is fine as long as an absolute time is
not required.

LME Reference — date 441

cal2julian

Calendar to julian date conversion.

Syntax
jd = cal2julian(datetime)
jd = cal2julian(year, month, day)
jd = cal2julian(year, month, day, hour, minute, second)

Description
cal2julian(datetime) converts the calendar date and time to the
julian date. Input arguments can be a vector of 3 components (year,
month and day) or 6 components (date and hour, minute and sec-
onds), or scalar values provided separately. The result of clock can
be used directly.

Example
Number of days between October 4 1967 and April 18 2005:

cal2julian(2005, 4, 18) - cal2julian(1967, 10, 4)
14624

See also
julian2cal, clock

julian2cal

Julian date to calendar conversion.

Syntax
datetime = julian2cal(jd)
(year, month, day, hour, minute, second) = julian2cal(jd)

Description
julian2cal(jd) converts the julian date to calendar date and time.
With a single output, the result is given a a row vector of 6 values
for the year, month, day, hour, minute and second; with more output
arguments, values are given separately.

Example
Date 1000 days after April 18 2005:

julian2cal(cal2julian(2005, 4, 18) + 1000)
2008 1 13 0 0 0

442 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
cal2julian

5.35 MAT-files

matfiledecode

Decode the contents of a MATLAB MAT-file.

Syntax
var = matfiledecode(fd)
var = matfiledecode(data)
var = matfiledecode(..., ignoreErr)

Description
matfiledecode(fd) reads data from file descriptor fd until the end
of the file. The data must be the contents of a MATLAB-compatible
MAT-file. They are made of 8-bit bytes; no text conversion must take
place. The result is a structure whose fields have the name and the
contents of the variables saved in the MAT-file.

Instead of a file descriptor, the data can be provided directly as the
argument. In that case, the argument data must be an array, which
can be read from the actual file with fread or obtained from a network
connection.

Only arrays are supported (scalar, matrices, arrays of more than
two dimensions, real or complex, numeric, logical or char). A second
input argument can be used to specify how to handle data of unsup-
ported types: with false (default value), unsupported types cause an
error; with true, they are ignored.

Example
fd = fopen(’data.mat’);
s = matfiledecode(fd);
fclose(fd);
s
s =
x: real 1x1024
y: real 1x1024

See also
matfileencode

LME Reference — shell 443

matfileencode

Encode the contents of a MATLAB MAT-file.

Syntax
matfileencode(fd, s)
matfileencode(s)

Description
matfileencode(fd,s) writes the contents of structure s to file de-
scriptor fd as a MATLAB-compatible MAT-file. Each field of s corre-
sponds to a separate variable in the MAT-file. With one argument,
matfileencode(s) writes to the standard output (which should be un-
common since MAT-files contain non-printable bytes).

Only arrays are supported (scalar, matrices, arrays of more than
two dimensions, real or complex, numeric, logical or char).

Examples
s.a = 123;
s.b = ’abc’;
fd = fopen(’data.mat’, ’wb’);
matfileencode(fd, s);
fclose(fd);

Function variables can be used to save all variables:

v = variables;
fd = fopen(’var.mat’, ’wb’);
matfileencode(fd, v);
fclose(fd);

See also
matfiledecode, variables

5.36 Shell

This section describes functions related to the Unix or Windows shell.
They are available only on Windows and on Unix (or Unix-like) systems,
such as macOS.

The versions for Unix and Windows have significant differences:

– Most functions described here are defined on both Unix and Win-
dows, to avoid errors when loading functions which contain con-
ditional code for Unix and Windows. Functions with an empty im-
plementation return the error "Not supported". Table below gives
the status of all commands.

444 Sysquake Remote ©1999-2016, Calerga Sàrl

Command Unix Windows
cd supported supported
cputime supported undefined
dir supported supported
dos not supported supported
getenv supported supported
pwd supported supported
setenv supported not supported
sleep supported supported
unix supported not supported
unsetenv supported not supported

– On Windows, some of the functionality of unix is provided by dos.
The main difference is that dos does not give any output, except
for the status code of the command.

Functions

cd

Set or get the current directory.

Syntax
cd(str)
str = cd

Description
cd(str) changes the current directory. Without input argument, cd
gives the current directory, like pwd.

The current directory is the root directory where files specified by
relative paths are searched by functions like fopen and dir. LME li-
braries are specified by name, not by path; the places where they are
searched is specified by a list of search paths, typically specified with
a path command or a dialog box in a graphical user interface.

Example
cd(’/usr/include’);

See also
pwd, dir

cputime

Amount of processing time since the beginning of the process.

LME Reference — shell 445

Syntax
t = cputime

Description
cputime gives the amount of processing time spent since the applica-
tion has been launched.

See also
posixtime, clock

dir

List of files and directories.

Syntax
dir
dir(path)
r = dir
r = dir(path)

Description
dir displays the list of files and directories in the current path. A string
input argument can specify the path.

With an output argument, dir returns the list of files and directories
as a structure array with the following fields:

Name Value
name file name or directory name
isdir false for files, true for directories
altname alternate name (Windows only)

Field isdir may be missing on some patforms. On Windows,
altname contains the DOS-compatible name (a.k.a. "8.3") if it exists,
or an empty string otherwise.

See also
cd, pwd

dos

Execute a command under Windows.

Syntax
status = dos(str)

446 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
dos(str) executes a command with the system Windows function. No
input can be provided, and output is discarded. dos returns the status
code of the command, which is normally 0 for successful execution.

Example
dos(’del C:/tmp/data.txt’);

See also
unix

getenv

Get the value of an environment variable.

Syntax
value = getenv(name)

Description
getenv(name) gives the value of the environment variable of the spec-
ified name. If no such environment variable exists, getenv returns an
empty string.

Example
user = getenv(’USER’);

See also
setenv, unsetenv

pwd

Get the current directory.

Syntax
str = pwd

Description
pwd ("print working directory") gives the current directory. It has the
same effect as cd without input argument.

LME Reference — shell 447

See also
cd, dir

setenv

Set the value of an environment variable.

Syntax
setenv(name, value)
setenv(name)

Description
setenv(name,value) sets the value of the environment variable of
the specified name. Both arguments are strings. If no such environ-
ment variable exists, it is created.

With a single input argument, setenv creates an empty environ-
ment variable (or remove the value of an exisisting environment vari-
able).

Environment variables are defined in the context of the application;
they can be accessed in the application or in processes it launches.
Environment variables of the calling process (command shell, for in-
stance) are not changed.

setenv is not defined for Windows.

Example
setenv(’CONTROLDEBUG’, ’1’);

See also
getenv, unsetenv

sleep

Suspend execution for a specified amount of time.

Syntax
sleep(t)

Description
sleep(t) suspend execution during t seconds with a resolution of a
microsecond.

448 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
sleep(1e-3);

unix

Execute a Unix command.

Syntax
unix(str)

Description
unix(str) executes a command with the default shell. No input can
be provided, and output is directed to the standard output of LME.

Examples
unix ls
unix(’cc -o calc calc.c; ./calc’)

See also
dos

unsetenv

Remove an environment variable.

Syntax
unsetenv(name)

Description
unsetenv(name) removes the definition of the environment variable
of the specified name. Argument is a string. If no such environment
variable exists, unsetenv does nothing.

Environment variables are defined in the context of the application;
they can be accessed in the application or in processes it launches.
Environment variables of the calling process (command shell, for in-
stance) are not changed.

unsetenv is not defined for Windows.

Example
unsetenv(’CONTROLDEBUG’);

LME Reference — graphics 449

See also
getenv, setenv

5.37 Graphics

LME provides low-level commands for basic shapes as well as high-
level commands for more specialized plots:

Low-level commands Low-level commands add simple shapes
such as lines, marks, polygons, circles and images. With them,
you can display virtually everything you want. Arguments of these
commands are such that it is very easy to work globally with ma-
trices without computing each value sequentially in a loop.

High-level commands High-level commands perform some com-
putation of their own to process their arguments before displaying
the result. This has two benefits: first, the code is simpler, more
compact, and faster to develop. Second, command execution is
faster, because the additional processing is not interpreted by LME,
but implemented as native machine code. The information related
to interactive manipulation is often easier to use, too. Most of these
functions are related to automatic control and signal processing.

Here is the list of these commands:
2D low-level drawing commands

activeregion
area
bar
barh
circle

colormap
contour
fplot
image
line

pcolor
plot
polar
quiver
text

2D high-level drawing commands

bodemag
bodephase
dbodemag
dbodephase
dimpulse
dinitial
dlsim
dnichols
dnyquist

dsigma
dstep
erlocus
hgrid
hstep
impulse
initial
lsim
ngrid

nyquist
nyquist
plotroots
rlocus
sgrid
sigma
step
zgrid

450 Sysquake Remote ©1999-2016, Calerga Sàrl

Scaling, labels, and figure style

altscale
label
figurestyle
legend

plotoption
scale
scalefactor
scaleoverview

ticks
title

3D

contour3
line3
mesh

plot3
plotpoly
sensor3

surf

3D scaling and lighting

camdolly
camorbit
campan
campos
camproj

camroll
camtarget
camup
camva
camzoom

daspect
lightangle
material

5.38 Remarks on graphics

Many functions which produce the display of graphical data accept two
optional arguments: one to specify the style of lines and symbols, and
one to identify the graphical element for interactive manipulation.

Style

The style defines the color, the line dash pattern (for continuous
traces) or the shape (for discrete points) of the data.

There are two different ways to specify the style. The first one, de-
scribed below, is with a single string. The second one, introduced with
Sysquake 5, is with an option structure built with plotset or directly
with named arguments; it is more verbose, hence easier to under-
stand, and gives access to more settings, such as line width or marker
colors.

The possible values in a style string are given below. Note that
the color is ignored on some output devices (such as black and white
printers) and the dash pattern is used only on high-resolution devices

LME Reference — remarks on graphics 451

(such as printers or EPS output). The color code is lowercase for thin
lines and uppercase for thicker lines on devices which support it.

Color String
black k
blue b
green g
cyan c
red r
magenta m
yellow y
white w
RGB h(rrggbb)
RGB h(rgb)

Dash Pattern String
solid _ (underscore)
dashed -
dotted :
dash-dot !

Shape String
none (invisible) (space)
point .
circle o
cross x
plus +
star *
triangle up ˆ
triangle down v
square [
diamond <

Miscellaneous String
stairs s
stems t
fill f
arrow at end a
arrows at beginning and end A

Color ’h(rrggbb)’ specifies a color by its red, green, and blue
components; each of them is given by two hexadecimal digits from
00 (minimum brightness) to ff (maximum brightness). Color ’h(rgb)’
specifies each component with a single hexadecimal digit. For exam-
ple, ’h(339933)’ and ’h(393)’ both specify the same greenish gray.
Like for other colors, an uppercase ’H’ means that the line is thick.

Style ’s’ (stairs) is supported only by the plot, dimpulse, dstep,

452 Sysquake Remote ©1999-2016, Calerga Sàrl

dlsim, and dinitial functions. It is equivalent to a zero-order hold,
i.e. two points are linked with a horizontal segment followed by a
vertical segment.

Style ’t’ (stems) draws for each value a circle like ’o’ and a verti-
cal line which connects it to the origin (in 2D plots, y=0 for linear scale
or y=1 for logarithmic scale; in 3D plots, z=0). In polar plots, stems
connects points to x=y=0.

Style ’f’ (fill) fills the shape instead of drawing its contour. Exactly
how the shape is filled depends on the underlying graphics architec-
ture; if the contour intersects itself, there may be holes.

Style ’a’ adds an arrow at the end of lines drawn by plot, and
style ’A’ adds arrows to the beginning and the end. The arrow size
depends only on the default character size, neither on the line length
nor on the plot scale. Its color and thickness are the same as the line’s.

Many graphical commands accept data for more than one line. If
the style string contains several sequences of styles, the first line bor-
rows its style from the first sequence, the second line, from the second
sequence, and so on. If there are not enough styles, they are recycled.
A sequence is one or two style specifications, one of them for the color
and the other one for the dash pattern or the symbol shape, in any or-
der. Sequences of two specifications are used if possible. Commas
may be used to remove ambiguity. Here are some examples:

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’k-r!’)

The first line (from (0,1) to (1,1)) is black and dashed, the second line
(from (0,2) to (1,2)) is red and dash-dot, and the third line (from (0,3)
to (1,3)) is black and dashed again.

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’rbk’)

The first line is red, the second line is blue, and the third line is black.

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’-br’)

The first and third lines are blue and dashed, and the second line is
red and solid.

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’:,H(cccccc)’)

The first and third lines are dotted, and the second line is gray, solid,
and thick.

Graphic ID

The second optional argument is the graphic ID. It has two purposes.
First, it specifies that the graphic element can be manipulated by the

LME Reference — remarks on graphics 453

user. When the user clicks in a figure, Sysquake scans all the curves
which have a non-negative graphic ID (the default value of all com-
mands is -1, making the graphical object impossible to grasp) and sets
_z0, _x0, _y0, _id, and _ix such that they correspond to the nearest
element if it is close enough to the mouse coordinates. Second, the ar-
gument _id is set to the ID value so that the mousedown, mousedrag,
and mouseup handlers can identify the different objects the user can
manipulate.

In applications without live interactivity, such as Sysquake Remote,
the graphic ID argument is accepted for compatibility reasons, but
ignored.

Scale

Before any figure can be drawn on the screen, the scale (or equiv-
alently the portion of the plane which is represented on the screen)
must be determined. The scale depends on the kind of graphics, and
consequently is specified in the draw handler, but can be changed by
the user with the zoom and shift commands. What the user specifies
has always the priority. If he or she has not specified a new scale, the
scale command found in the draw handler is used:

scale([xMin,xMax,yMin,yMax])

If scale is not used, or if some of the limits are NaN (not an number),
a default scale is given by the plot commands themselves. If used, the
scale command should always be executed before any plot command,
because several of them use the scale to calculate traces only over
the visible range or to adjust the density of the calculated points of
the traces.

If you need to know the limits of the displayed area in your draw
handler, use scale to get them right after setting the default scale, so
that you take into account the zoom and shift specified by the user:

scale(optString, [defXMin, defXMax, defYMin, defYMax]);
sc = scale;
xMin = sc(1);
xMax = sc(2);
yMin = sc(3);
yMax = sc(4);

Grids

In addition to the scale ticks displayed along the bounding frame, grids
can be added to give visual clues and make easier the interpretation

454 Sysquake Remote ©1999-2016, Calerga Sàrl

of graphics. X and Y grids are vertical or horizontal lines displayed in
the figure background. They can be switched on and off by the user
in the Grid menu, or switched on by programs with the plotoption
command (they are set off by default). In the example below, both X
and Y grids are switched on:

plotoption xgrid
plotoption ygrid
plot(rand(1,10));

Commands which display grids for special kind of graphics are also
available:
Command Intended use
hgrid nyquist, dnyquist
ngrid nichols, dnichols
sgrid plotroots, rlocus (continuous-time)
zgrid plotroots, rlocus (discrete-time)

They can be used without argument, to let the user choose the
level of details: none means the command does not produce any out-
put; basic is the default value and gives a simple, non-obstructive hint
(a single line or a circle); and full gives more details. To change by
program the default level of details (basic), plotoption is used. In
the example below, the grid for the complex plane of the z transform
is displayed with full details. Once the figure is displayed, the user is
free to reduce the level of details with the Grid menu.

scale(’equal’, [-2,2,-2,2]);
zgrid;
plotoption fullgrid;
plotroots([1,-1.5,0.8]);

5.39 Base Graphical Functions

activeregion

Region associated with an ID.

Syntax
activeregion(xmin, xmax, ymin, ymax, id)
activeregion(X, Y, id)

Description
The command activeregion defines invisible regions with an ID for
interactive manipulations in Sysquake. Contrary to most other graph-
ical objects, a hit is detected when the mouse is inside the region, not
close like with points and lines.

LME Reference — base graphics 455

activeregion(xmin,xmax,ymin,ymax,id) defines a rectangular
shape.

activeregion(X,Y,id) defines a polygonal shape. The start and
end points do not have to be the same; the shape is closed automati-
cally.

Example
Rectangular button. If an ID was given to plot without activeregion,
a hit would be detected when the mouse is close to any of the four cor-
ners; with activeregion, a hit is detected when the mouse is inside
the rectangle.

plot([50, 70, 70, 50, 50], [10, 10, 30, 30, 10]);
activeregion(50, 70, 10, 30, id=1);

See also
plot, image

altscale

Alternative y scale for 2D plots.

Syntax
altscale(b)

Description
altscale(b) selects an alternative y scale whose axis and labels are
displayed on the right of the rectangular frame of 2D plots. Its input
argument is a logical value which is true to select the alternative scale
and false to revert to the primary scale.

Example
bar(1:5, rand(1, 5));
altscale(true);
plot(1:5, 3 * rand(1,5), ’R’);
label(’’, ’y1’, ’y2’);
legend(’y1\ny2’, ’bfR’);

See also
scale, label

area

Area plot.

456 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
area(y)
area(x, y)
area(x, y, y0)
area(..., style)
area(..., style, id)

Description
With column vector arguments, area(x,y) displays the area between
the horizontal axis y=0 and the points given by x and y. When the
second argument is an array with as many rows as elements in x,
area(x,Y) displays the contribution of each column of Y, summed
along each row. When both the first and second arguments are ar-
rays of the same size, area(X,Y) displays independent area plots for
corresponding columns of X and Y without summation.

With a single argument, area(y) takes integers 1, 2, ..., n for the
horizontal coordinates.

With a third argument, area(x,y,y0) displays the area between
the horizontal line y=y0 and values defined by y.

The optional arguments style and id have their usual meaning.
area uses default colors when argument style is missing.

Examples
Red area defined by points (1,2), (2,3), (3,1), and (5,2) above y=0; on
top of it, blue area defined by points (1,2+1), (2,3+2) etc.

area([1;2;3;5],[2,1;3,2;1,5;2,1], 0, ’rb’);

Two separate areas above y=0.2 defined by points (1,2), (2,3), (3,1),
(5,2); and (6,1), (7,2), (8,5), and (9,1).

area([1,6;2,7;3,8;5,9],[2,1;3,2;1,5;2,1], 0.2, ’rb’);

See also
plot, bar, hbar

bar

Vertical bar plot.

Syntax
bar(y)
bar(x, y)
bar(x, y, w)
bar(..., kind)
bar(..., kind, style)
bar(......, id)

LME Reference — base graphics 457

2 4
0

5

bar([2,4,3,6])

2 4
0

5

bar([2,4,3,6;3,5,4,1])

2 4
0

20

bar(1:4,magic(4),[],’stacked’)

2 4

2

4

6
...[2,4,3,1;5,6,4,6],[],’interval’)

Figure 5.5 Example of bar with different options

Description
bar(x,y) plots the columns of y as vertical bars centered around the
corresponding value in x. If x is not specified, its default value is
1:size(y,2).

bar(x,y,w), where w is scalar, specifies the relative width of each
bar with respect to the horizontal distance between the bars; with
values smaller than 1, bars are separated with a gap, while with values
larger than 1, bars overlap. If w is a vector of two components [w1,w2],
w1 corresponds to the relative width of each bar in a group (columns
of y), and w2 to the relative width of each group. Default values, used
if w is missing or is the empty matrix [], is 0.8 for both w1 and w2.

bar(...,kind), where kind is a string, specifies the kind of bar
plot. The following values are recognized:

’grouped’ Columns of y are grouped horizontally (default)
’stacked’ Columns of y are stacked vertically
’interval’ Bars defined with min and max val.

With ’interval’, intervals are defined by two consecutive rows of
y, which must have an even number of rows.

The optional arguments style and id have their usual meaning.
bar uses default colors when argument style is missing.

Examples
Simple bar plot (see Fig. 5.5):

bar([2,4,3,6;3,5,4,1]);

458 Sysquake Remote ©1999-2016, Calerga Sàrl

Stacked bar plot:

bar(1:4, magic(4), [], ’stacked’);

Interval plot:

bar(1:4, [2,4,3,1;5,6,4,6], [], ’interval’);

See also
barh, plot

barh

Horizontal bar plot.

Syntax
barh(x)
barh(y, x)
barh(y, x, w)
barh(..., kind)
barh(..., kind, style)
barh(..., id)

Description
barh plots a bar plot with horizontal bars. Please see bar for a de-
scription of its behavior and arguments.

Examples
Simple horizontal bar plot:

barh([2,4,3,6;3,5,4,1]);

Stacked horizontal bar plot:

barh(1:4, magic(4), [], ’stacked’);

Horizontal interval plot:

barh(1:4, [2,4,3,1;5,6,4,6], [], ’interval’);

See also
bar, plot

circle

Add circles to the figure.

LME Reference — base graphics 459

Syntax
circle(x,y,r)
circle(x,y,r,style)
circle(x,y,r,style,id)

Description
circle(x,y,r) draws a circle of radius r centered at (x,y). The argu-
ments can be vectors to display several circles. Their dimensions must
match; scalar numbers are repeated if necessary. The optional fourth
and fifth arguments are the style and object ID (cf. their description
above).

In mouse handlers, _x0 and _y0 correspond to the projection of the
mouse click onto the circle; _nb is the index of the circle in x, y and r,
and _ix is empty.

Circles are displayed as circles only if the scales along the x and y
axes are the same, and linear. With different linear scales, circles are
displayed as ellipses. With logarithmic scales, they are not displayed.

Examples
circle(1, 2, 5, ’r’, 1);
circle(zeros(10,1), zeros(10, 1), 1:10);

See also
plot, line

colormap

Current colormap from scalar to RGB.

Syntax
colormap(clut)
clut = colormap

Description
Command colormap(clut) changes the color mapping from scalar
values to RGB values used by commands such as pcolor, image and
surf.

Colormaps are arrays of size n-by-3. Each row corresponds to a
color; the first column is the intensity of red from 0 (no red component)
to 1 (maximum intensity), the second column the intensity of green,
and the third column the intensity of blue. Input values are mapped
uniformly to one of the discrete color entries, 0 to the first row and 1
to the last row.

460 Sysquake Remote ©1999-2016, Calerga Sàrl

With an input argument, colormap(clut) sets the colormap to
clut. With an output argument, colormap returns the current col-
ormap.

See also
pcolor, image

contour

Level curves.

Syntax
contour(z)
contour(z, [xmin, xmax, ymin, ymax])
contour(z, [xmin, xmax, ymin, ymax], levels)
contour(z, [xmin, xmax, ymin, ymax], levels, style)

Description
contour(z) plots seven contour lines corresponding to the surface
whose samples at equidistant points 1:size(z,2) in the x direction
and 1:size(z,1) on the y direction are given by z. Contour lines
are at equidistant levels. With a second non-empty argument [xmin,
xmax, ymin, ymax], the samples are at equidistant points between
xmin and xmax in the x direction and between ymin and ymax in the y
direction.

The optional third argument levels, if non-empty, gives the num-
ber of contour lines if it is a scalar or the levels themselves if it is a
vector.

The optional fourth argument is the style of each line, from the
minimum to the maximum level (styles are recycled if necessary). The
default style is ’kbrmgcy’.

When the style is f for a filled region, the corresponding level is
filled on the side with a lower value of z. If the style argument is
the single character ’f’, all levels are filled with the default colors.
Regions with a value of z smaller than the lowest level are left trans-
parent; an explicit lower level should be specified to fill the whole
rectangle.

Examples
A function is evaluated over a grid of two variables x and y, and is
drawn with contour (see Fig. 5.6):

LME Reference — base graphics 461

-1 0 1
-1

0

1
contour

Figure 5.6 Example of contour

(x, y) = meshgrid(-2 + (0:40) / 10);
z = exp(-((x-0.2).̂ 2+(y+0.3).̂ 2)) ...

- exp(-((x+0.5).̂ 2+(y-0.1).̂ 2)) + 0.1 * x;
scale equal;
contour(z, [-1,1,-1,1]);

Filled contours:

u = -2 + (0:80) / 20;
x = repmat(u, 81, 1);
y = x’;
z = exp(-((x-0.2).̂ 2+(y+0.3).̂ 2)) ...

- exp(-((x+0.5).̂ 2+(y-0.1).̂ 2)) ...
+ 0.1 * x ...
+ 0.5 * sin(y);

levels = -1:0.2:1;
scale equal;
contour(z, [-1,1,-1,1], levels, ’f’);

See also

image, quiver

figurestyle

Figure style.

462 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax

figurestyle(name, style)
style = figurestyle(name)

Description

figurestyle sets or gets the style of figures. The same settings
apply to all subplots; settings for specific subplots are changed with
subplotstyle. Styles are set or got separately for each feature of
the graphics (plot background, drawing, title, etc.). They are specified
with the same structures as plotset or fontset (except for
’plotmargin’), or with the corresponding named arguments.

The first argument, name, is the name of the style feature:

Name Type Feature
’controlbg’ plotset Control background
’controlfont’ fontset Font for controls
’draw’ plotset Default line or mark plots
’figfont’ fontset Font for text in figure
’frame’ plotset Plot or subplot frame and ticks
’grid’ plotset Special grids such as hgrid
’hilight’ plotset Hilighted subplot frame for interactive figures
’tickfont’ fontset Font for tick labels
’labelfont’ fontset Font for axis labels
’legend’ plotset Legend box (frame and background)
’legendfont’ fontset Font for legend text
’plotbg’ plotset Plot or subplot background
’plotmargin’ Plot margin size
’scaleoverview’ plotset Scale overview rectangle
’titlefont’ fontset Font used for plot or subplot titles
’winbg’ plotset Background around plots or subplots
’xygrid’ plotset Rectangular grid (or polar in polar plots)

figurestyle(name,style) changes the specified style. The style
can be specified with a style structure, like what is returned by
plotset or fontset, or with named arguments. Settings which are
not specified keep their default values.

With a single argument, figurestyle(name) returned the current
specified style.

The value for ’plotmargin’ is a structure which describes the mar-
gin width around plots or subplots. It contains the following fields:

LME Reference — base graphics 463

Name Value
Left left margin in multiple of a digit width
Right right margin in multiple of a digit width
Top top margin in multiple of line height
Bottom bottom margin in multiple of line height
CenteredLabelWidth see below
CenteredLabelHeight see below
FixedControlVPos see below

The fonts the widths are based on are the title font for Top, and the
label font for the other fields. When an alternative y scale is used with
altscale, the width of the right margin is based on Left instead of
Right.

If field CenteredLabelWidth is larger than 0, it specifies the
width of an additional margin (in multiple of a digit width) where
the label of the Y axis is displayed, centered vertically. If field
CenteredLabelHeight is larger than 0, it specifies the height of an
additional bottom margin (in multiple of a line height) where the label
of the X axis is displayed, centered horizontally. The default location
of axis labels is at the end of the tick labels.

If field FixedControlVPos is false, controls (buttons, sliders etc.)
are centered vertically in the subplot content area, or can be scrolled
vertically by the user if they exceed the available space. If it is true,
controls are aligned at the top and cannot be scrolled.

Considered as a whole, styles should be chosen such that they pro-
vide enough contrast to make all features visible. In particular, the
font color should be changed when a dark background is selected.
Some combinations, such as red on green, are difficult to distinguish
for color-blind persons.

In Sysquake, figurestyle should not be used in figure draw han-
dlers, because it applies to all subplots. It should typically be placed
in init or menu handlers. To change the default figure styles which
are used in all figures unless they are overridden by figurestyle,
defaultstyle should be called instead.

Example
Blue appearance with different dark shades for the backgrounds, and
large fonts.

figurestyle(’winbg’, FillColor=’#002’);
figurestyle(’plotbg’, FillColor=’#005’);
figurestyle(’legend’, FillColor=’#00a’);
figurestyle(’draw’, Size=18, LineWidth=4, Color=’#88f’);
figurestyle(’grid’, Size=18, LineWidth=2, Color=’#66c’);
figurestyle(’xygrid’, LineWidth=2, Color=’#66c’);
figurestyle(’frame’, LineWidth=3, Color=’#44f’);
figurestyle(’figfont’, Size=20, Color=’white’);

464 Sysquake Remote ©1999-2016, Calerga Sàrl

figurestyle(’controlfont’, Size=20, Color=’white’);
figurestyle(’legendfont’, Size=20, Color=’white’);
figurestyle(’titlefont’, Size=32, Bold=true, Color=’white’);
figurestyle(’tickfont’, Size=18, Color=’white’);
figurestyle(’labelfont’, Size=18, Color=’white’);

See also
subplotstyle, plotset, plotfont, plotoption

fontset

Options for fonts.

Syntax
options = fontset
options = fontset(name1=value1, ...)
options = fontset(name1, value1, ...)
options = fontset(options0, name1, value1, ...)

Description
fontset(name1,value1,...) creates the font description used by
text. Options are specified with name/value pairs, where the name
is a string which must match exactly the names in the table below.
Case is significant. Alternatively, options can be given with named
arguments. Options which are not specified have a default value. The
result is a structure whose fields correspond to each option. Without
any input argument, fontset creates a structure with all the default
options. Options can also be passed directly to text or math as named
arguments.

When its first input argument is a structure, fontset adds or
changes fields which correspond to the name/value pairs which
follow.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
Font ’’ font name
Size 10 character size in points
Bold false true for bold font
Italic false true for italic font
Underline false true for underline characters
Color [0,0,0] text color

The default font is used if the font name is not recognized. The color
is specified as an empty array (black), a scalar (gray) or a 3-element
vector (RGB) of class double (0=black, 1=maximum brightness) or
uint8 (0=black, 255=maximum brightness).

LME Reference — base graphics 465

Examples
Default font:

fontset
Font: ’’
Size: 10
Bold: false
Italic: false
Underline: false
Color: real 1x3

Named argument directly in text:

text(0, 0, ’Text’, Font=’Times’, Italic=true, Bold=true)

See also
text

fplot

Function plot.

Syntax
fplot(fun)
fplot(fun, limits)
fplot(fun, limits, style)
fplot(fun, limits, style, id)
fplot(fun, limits, style, id, p1, p2, ...)

Description
Command fplot(fun,limits) plots function fun, specified by its
name as a string, a function reference, or an inline or anonymous
function. The function is plotted for x between limit(1) and
limit(2); the default limits are [-5,5].

The optional third and fourth arguments are the same as for all
graphical commands.

Remaining input arguments of fplot, if any, are given as additional
input arguments to function fun. They permit to parameterize the
function. For example fplot(’fun’,[0,10],’’,-1,2,5) calls fun as
y=fun(x,2,5) and displays its value for x between 0 and 10.

Examples
Plot a sine:

fplot(@sin);

466 Sysquake Remote ©1999-2016, Calerga Sàrl

Plot (+ 0.3)2 + exp−32 in red for ∈ [−2,3] with = 7.2 and an
identifier of 1:

fun = inline(...
’function y=f(x,a); y=(x+0.3)̂ 2+a*exp(-3*x̂ 2);’);

fplot(fun, [-2,3], ’r’, 1, 7.2);

Same plot with an anonymous function:

a = 7.2;
fplot(@(x) (x+0.3)̂ 2+a*exp(-3*x̂ 2), [-2,3], ’r’, 1);

See also
plot, inline, operator @

image

Raster RGB or grayscale image.

Syntax
image(gray)
image(red, green, blue)
image(rgb)
image(..., [xmin, xmax, ymin, ymax])
image(..., mode)
image(..., id)

Description
image displays a raster image (an image defined by a rectangular ar-
ray of patches of colors called pixels). The raster image can be either
grayscale or color. A grayscale image is defined by a double matrix
of pixel values in the range 0 (black) to 1 (white), by a uint8 matrix in
the range 0 (black) to 255 (white), or by a uint16 matrix in the range
0 (black) to 65535 (white). A color image is defined by three matrices
of equal size, corresponding to the red, green, and blue components,
or by an array with three planes along the 3rd dimension. Each com-
ponent is defined between 0 (black) to 1 (maximum intensity) with
double values, between 0 (black) to 255 (maximum intensity) with
uint8 values, or between 0 (black) and 65535 (maximum intensity)
with uint16 values. If a colormap has been defined, grayscale image
rendering uses it.

The position is defined by the the minimum and maximum
coordinates along the horizontal and vertical axes. The
raster image is scaled to fit. The first line of the matrix or
matrices is displayed at the top. The position can be specified

LME Reference — base graphics 467

-1 0 1
-1

0

1
image

Figure 5.7 Example of image

by an argument [xmin,xmax,ymin,ymax]; by default, it is
[0,size(im,2),0,size(im,1)] where im stands for the image array
or one of its RGB components.

If mode is ’e’, the raster image is scaled down such that each pixel
has the same size; otherwise, the specified position is filled with the
raster image. You should use ’e’ when you want a better quality, but
do not add other elements in the figure (such as marks or lines) and
do not have interaction with the mouse.

Pixels on the screen are interpolated using the bilinear method if
mode is ’1’, and the bicubic method if mode is ’3’.

Examples
Two ways to display a table of 10-by-10 random color cells (see
Fig. 5.7):

image(rand(10), rand(10), rand(10));
image(rand(10, 10, 3));

A ramp of gray shades:

image(uint8(0:255));

Operator : and function meshgrid can be used to create the x and y
coordinates used to display a function z(x,y) as an image.

(X, Y) = meshgrid(-pi:0.1:pi);
Z = cos(X.̂ 2 + Y.̂ 2).̂ 2;
image(Z, [-1,1,-1,1], ’3’);

468 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
contour, quiver, colormap, pcolor

label

Plot labels.

Syntax
label(label_x)
label(label_x, label_y)
label(label_x, label_y, label_y2)

Description
label(label_x, label_y) displays labels for the x and y axes. Its
arguments are strings. The label for the y axis may be omitted.

When an alternative y scale is used with altscale, its label can be
specified with a third argument.

For a dB scale, an additional label [dB] is automatically displayed
below the text specified by label_y; it is not displayed if there is no
label_y (or an empty label_y). If label_y is a single-space string, it
is replaced by [dB] for a dB scale (i.e. [dB] is aligned correctly with
the top of the figure).

With plotoption math, labels can contain MathML or LaTeX.

Examples
step(1,[1,2,3,4]);
label(’t [s]’, ’y [m]’);

With literal strings, the command syntax may be more convenient:

label Re Im;

dB scale with only a [dB] label:

scale logdb;
bodemag(1, [1, 2, 3]);
label(’’, ’ ’);

See also
text, legend, title, ticks, altscale, plotoption

legend

Plot legend.

LME Reference — base graphics 469

Uniform random

Normal random

10 20

-1

0

1

Figure 5.8 Example of legend

Syntax
legend(str)
legend(str, style)

Description
legend(str,style) displays legends for styles defined in string
style. In string str, legends are separated by linefeed characters \n.
Legends are displayed at the top right corner of the figure in a frame.
All styles are permitted: symbols, lines, and filling. They are recycled
if more legends are defined in str. If str is empty, no legend is
displayed.

With a single input argument, legend(str) uses the default style
’k’.

With plotoption math, legend lines in first argument can contain
MathML or LaTeX.

Example
Legend for two traces (see Fig. 5.8).

plot(1:20, [rand(1,20); randn(1,20)], ’_x’);
legend(’Uniform random\nNormal random’, ’_x’);

See also
label, ticks, title, plotoption

470 Sysquake Remote ©1999-2016, Calerga Sàrl

line

Plot lines.

Syntax
line(A, b)
line(V, P0)
line(..., style)
line(..., style, id)

Description
line displays one or several straight line(s). Each line is defined by
an implicit equation or an explicit, parametric equation.

Implicit equation: Lines are defined by equations of the form
1 + 2y = b. The first argument of line is a matrix which contains
the coefficients 1 in the first column and 2 in the second column.
The second argument is a column vector which contains the coeffi-
cients b.

Explicit equations: Lines are defined by equations of the form
P = P0 + λV where P0 is a point of the line, V a vector which defines
its direction, and λ a real parameter. The first argument of line is a
matrix which contains the coefficients in the first column and y in
the second column. The second argument is a matrix which contains
the coefficients 0 in the first column and y0 in the second column.

In both cases, each row corresponds to a different line. If one of the
arguments has one row and the other has several (or none), the same
row is duplicated to match the other size.

In figures with a logarithmic scale, only horizontal and vertical lines
are allowed.

The optional third and fourth arguments are the same as for all
graphical commands.

In mouse handlers, _x0 and _y0 correspond to the projection of the
mouse position onto the line; _nb is the index of the line in A and b,
and _ix is empty.

Examples
Vertical line at x=5:

line([1,0],5)

Draggable horizontal blue lines at y=2 and y=3:

line([0,1], [2;3], ’b’, 1)

The same lines with named arguments:

line([0,1], [2;3], Color=’blue’, id=1)

LME Reference — base graphics 471

See also
plot, circle

math

Display MathML or LaTeX in a figure.

Syntax
math(x, y, string)
math(x, y, string, justification)
math(..., font)
math(..., id=id)

Description
With three arguments, math(x,y,string) renders a string as
MathML or LaTeX, centered at the specified position. The third
argument is assumed to be MathML unless it starts with a dollar
character; in that case, it is converted to MathML as if it was
processed by latex2mathml.

An optional fourth argument specifies how the MathML equation
should be aligned with respect to the position (x,y). It is a string of
one or two characters from the following set:

Char. Alignment
c Center (may be omitted)
l Left
r Right
t Top
b Bottom

For instance, ’l’ means that the MathML equation is displayed to
the right of the given position and is centered vertically, and ’rt’,
that the equation is to the bottom left of the given position.

An optional trailing argument specifies the font. It is a structure
which is typically created with fontset; but only the base font size is
used. Alternatively, the base font size can be specified with a named
argument.

An ID can be specified with a named argument (not with a normal,
unnamed argument).

The following MathML elements are supported: math, merror,
mfenced, mfrac, mi, mn, mo, mpadded, mphantom, mroot, mrow, msqrt,
mspace, msub, msubsup, msup, mtable, mtd, mtext, mtr.

Examples
math(0, 0, mathml([1,pi,1e30]));
math(0, 0, mathml(1e-6, Format=’e’, NPrec=2), Size=20);
math(0, 0, ’$\\rho=\\sqrt{x̂ 2+ŷ 2}$’);

472 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
text, mathml, latex2mathml, fontset

pcolor

Pseudocolor plot.

Syntax
pcolor(C)
pcolor(X, Y, C)
pcolor(..., style)
pcolor(..., style, id)

Description
Command pcolor(C) displays a pseudocolor plot, i.e. a rectangular
array where the color of each cell corresponds to the value of elements
of 2-D array C. These values are real numbers between 0 and 1. The
color used by pcolor depends on the current color map; the default is
a grayscale from black (0) to white (1).

pcolor(X,Y,C) displays the plot on a grid whose vertex coordi-
nates are given by arrays X and Y. Arrays X, Y and C must all have the
same size.

With an additional string input argument, pcolor(...,style)
specifies the style of the lines drawn between the cells.

The following argument, if it exists, is the ID used for interactivity.
During interactive manipulation, the index obtained with _ix corre-
sponds to the corner of the patch under the mouse with the smallest
index.

Example
use colormaps;
n = 11;
(x, y) = meshgrid(1:n);
phi = pi/8;
X = x*cos(phi)-y*sin(phi);
Y = x*sin(phi)+y*cos(phi);
C = magic(n)/n̂ 2;
pcolor(X, Y, C, ’k’);
colormap(blue2yellow2redcm);
plotoption noframe;

See also
plot, colormap, image

LME Reference — base graphics 473

plot

Generic plot.

Syntax
plot(y)
plot(x, y)
plot(..., style)
plot(..., style, id)

Description
The command plot displays graphical data in the current figure. The
data are given as two vectors of coordinates x and y. If x is omitted,
its default value is 1:size(y,2). Depending on the style, the points
are displayed as individual marks or are linked with lines. The stairs
style (’s’) can be used to link two successive points with a horizontal
line followed by a vertical line. If x and y are matrices, each row is
considered as a separate line or set of marks; if only one of them is a
matrix, the other one, a row or column vector, is replicated to match
the size of the other argument.

The optional fourth argument is an identification number which is
used for interactive manipulation. It should be equal or larger than
1. If present and a mousedown, mousedrag and/or mouseup handler
exists, the position of the mouse where the click occurs is mapped to
the closest graphical element which has been displayed with an ID; for
the command plot, the closest point is considered (lines linking the
points are ignored). If such a point is found at a small distance, the
built-in variables _x0, _y0, and _z0 are set to the position of the point
before it is moved; the variable _id is set to the ID as defined by the
command plot; the variable _nb is set to the number of the row, and
the variable _ix is set to the index of the column of the matrix x and
y.

Examples
Sine between 0 and 2π:

x = 2 * pi * (0:100) * 0.01;
y = sin(x);
plot(x, y);

Ten random crosses:

plot(rand(1,10), rand(1,10), ’x’);

Two traces with different styles:

474 Sysquake Remote ©1999-2016, Calerga Sàrl

plot(rand(2, 10),
{Color=’red’, LineWidth=2;
Marker=’[]’, MarkerFaceColor=’navy’, LineStyle=’-’});

A complete SQ file for displaying a red triangle whose corners can be
moved interactively on Sysquake:

variables x, y // x and y are 1-by-3 vectors
init (x,y) = init // init handler
figure "Triangle"
draw drawTri(x, y)
mousedrag (x, y) = dragTri(x, y, _ix, _x1, _y1)

functions
{@
function (x,y) = init
x = [-1,1,0];
y = [-1,-1,2];
subplots(’Triangle’);

function drawTri(x,y)
scale(’equal’, [-3, 3, -3, 3]);
plot(x, y, FillColor=’red’, id=1);

function (x, y) = dragTri(x, y, ix, x1, y1)
if isempty(ix)
cancel; // not a click over a point

end
x(ix) = x1;
y(ix) = y1;

@}

See also
fplot, line, circle

plotoption

Set plot options.

Syntax
plotoption(str1, str2, ...)
plotoption opt1 opt2 ...

Description
plotoption sets the initial value of the plot options the user can
change. Its arguments, character strings, can each take one of the
following values.

’frame’ Rectangular frame with tick marks and a white
background around the plot (default).

LME Reference — base graphics 475

’noframe’ No frame, no tickmarks, no white background.

’label’ Subplot name above the frame (default).

’nolabel’ No subplot name.

’legend’ Legend (if it has been set with legend).

’nolegend’ Hidden legend.

’trlegend’ Legend in top right corner (default).

’tllegend’ Legend in top left corner.

’brlegend’ Legend in bottom right corner.

’bllegend’ Legend in bottom left corner.

’margin’ Margin for title and labels (default).

’nomargin’ No margin.

’math’ MathML or LaTeX rendering in title, label, legend, and
controls like button and slider. The string (or substring in legend)
is parsed as MathML if the first character is ’<’, or as LaTeX if it
is ’$’. Otherwise, it is displayed as if it was the text content of
an <mtext> element, to guarantee that there is no font mismatch
with mathematical expressions.

’nomath’ No math (default).

’xticks’ Ticks and labels for the x axis.

’noxticks’ No ticks and labels for the x axis.

’yticks’ Ticks and labels for the y axis.

’noyticks’ No ticks and labels for the y axis.

’xyticks’ Ticks and labels for the x and y axes (default).

’noxyticks’ No ticks and labels for the x and y axes.

’xgrid’ Grid of vertical lines for the x axis.

’noxgrid’ No grid for the x axis.

’ygrid’ Grid of horizontal lines for the y axis.

’noygrid’ No grid for the y axis.

’xygrid’ Grid of vertical and horizontal lines for the x and y axes.

’noxygrid’ No grid for the x and y axes (default).

476 Sysquake Remote ©1999-2016, Calerga Sàrl

’grid’ Normal details for grids displayed by sgrid, zgrid, etc.
(default).

’nogrid’ Removal of grids displayed by sgrid, zgrid, etc.

’fullgrid’ More details for grids displayed by sgrid, zgrid, etc.

’fill3d’ In 3D graphics, zoom in so that the bounding box fills the
figure.

Examples
Display of a photographic image without frame:

plotoption noframe;
image(photo);

Math in a title:

plotoption math;
title ’$\\hbox{Solution of}\\;\\dot{x}=f(x,t)$’;

See also
figurestyle, scale, legend

plotset

Options for plot style.

Syntax
options = plotset
options = plotset(name1, value1, ...)
options = plotset(options0, name1, value1, ...)

Description
plotset(name1,value1,...) creates the style option argument used
by functions which display graphics, such as plot and line. Options
are specified with name/value pairs, where the name is a string which
must match exactly the names in the table below. Case is significant.
Options which are not specified have a default value. The result is a
structure whose fields correspond to each option. Without any input
argument, plotset creates a structure with the default style.

When its first input argument is a structure, plotset adds or
changes fields which correspond to the name/value pairs which
follow.

Here is the list of permissible options:

LME Reference — base graphics 477

Name Default Meaning
ArrowEnd false arrow at end
ArrowStart false arrow at start
Color [] line color
Fill false fill
FillColor [] filling color
LineStyle ’’ line style
LineWidth [] line width
Marker ’’ marker style
MarkerEdgeColor [] marker edge color
MarkerFaceColor [] marker face (filling) color
Stairs false stairs
Stems false stems

Colors are specified by value or by name. An empty array means
the default color (usually black for lines and marker edge, none for fill-
ing, and white for marker face). A scalar number represents a shade
of gray, an array of 3 numbers an RGB color. An additional element
(last element of array of 2 or 4 numbers) represents the alpha compo-
nent (transparency) where 0 is completely transparent; it is ignored on
some platforms. Color type can be uint8 from 0 to 255, uint16 from
0 to 65535, or single or double from 0 to 1. In all cases, 0 represents
black and the largest value, the maximum brightness.

Color names can be one of the following:

478 Sysquake Remote ©1999-2016, Calerga Sàrl

Name Value as uint8
’black’ [0,0,0]
’blue’ [0,0,255]
’green’ [0,128,0]
’cyan’ [0,255,255]
’red’ [255,0,0]
’magenta’ [255,0,255]
’yellow’ [255,255,0]
’white’ [255,255,255]
’aqua’ [0,255,255]
’darkgray’ [169,169,169]
’darkgrey’ [169,169,169]
’darkgreen’ [0,64,0]
’fuchsia’ [255,0,255]
’gray’ [128,128,128]
’grey’ [128,128,128]
’lime’ [0,255,0]
’maroon’ [128,0,0]
’navy’ [0,0,128]
’olive’ [128,128,0]
’orange’ [255,165,0]
’purple’ [128,0,128]
’silver’ [192,192,192]
’teal’ [0,128,128]

Option LineStyle is an empty string for the default line style (solid
line unless FillColor is set), or one of the following one-character
strings:

Dash Pattern LineStyle
solid ’_’ (underscore)
dashed ’-’ (hyphen)
dotted ’:’
dash-dot ’!’
hidden ’ ’ (space)

Option Marker is an empty string for the default symbol (usually no
symbol, or a cross for plotroots), or one of the following strings:

LME Reference — base graphics 479

Marker Shape Marker
none ’ ’ (space)
point ’.’
circle ’o’
cross ’x’
plus ’+’
star ’*’
triangle up ’̂ ’
triangle down ’v’
triangle left ’<’
triangle right ’>’
square ’[]’ or ’[’
diamond ’<>’

An explicit Fill=true is usefull only for filling with the default color
or colors, with functions such contour. Otherwise, specifying a filling
color with FillColor implies Fill=true.

When Stems is true, a marker is drawn for each point and is linked
with a vertical line which connects it to the origin (in 2D plots, y=0 for
linear scale or y=1 for logarithmic scale; in 3D plots, z=0). In polar
plots, stems connects points to x=y=0.

Functions which support multiple styles, such as plot where each
trace can have a different style, accept a structure array or a list of
structures. If there are less elements in the style array or list than
there are traces to plot, styles are recycled, restarting from the first
one. If there are too many, superfluous styles are ignored.

When Stairs is true, for functions wihich support it, points are con-
nected with a horizontal line followed by a vertical line.

Examples
Default options:

plotset
ArrowEnd: false
ArrowStart: false
Color: []
FillColor: []
LineStyle: ’’
LineWidth: []
Marker: ’’
MarkerEdgeColor: []
MarkerFaceColor: []

Plot of 5 random lines defined by 10 points each, odd and even ones
with different styles:

data = rand(5, 10);
styleOdd = plotset(ArrowStart=true,

480 Sysquake Remote ©1999-2016, Calerga Sàrl

LineWidth=2,
Color=’red’,
Size=0);

styleEven = plotset(ArrowEnd=true,
LineWidth=2,
Size=10,
Color=’blue’,
MarkerEdgeColor=’black’,
MarkerFaceColor=’yellow’);

plot(data, {styleOdd, styleEven});

Multiple styles can also be built directly as a structure array, without
plotset; missing fields take their default values.

styles = {
LineWidth=2, Color=’red’;
LineStyle=’-’, Color=’blue’

};
plot(data, styles);

See also
plot, plotoption, figurestyle

polar

Polar plot.

Syntax
polar(theta, rho)
polar(..., style)
polar(..., style, id)

Description
Command polar displays graphical data in the current figure with po-
lar coordinates. The data are given as two vectors of coordinates
theta (in radians) and rho. Depending on the style, the points are
displayed as individual marks or are linked with lines. If x and y are
matrices, each row is considered as a separate line or set of marks;
if only one of them is a matrix, the other one, a vector, is reused for
each line.

Automatic scaling is performed the same way as for cartesian plots
after polar coordinates have been converted. The figure axes, ticks
and grids are specific to polar plots. Polar plots can be mixed with
other graphical commands based on cartesian coordinates such as
plot, line and circle.

LME Reference — base graphics 481

Example
theta = 0:0.01:20*pi;
rho = exp(0.1 * theta) .* sin(5 * theta);
polar(theta, rho);

See also
plot

quiver

Quiver plot.

Syntax
quiver(x, y, u, v)
quiver(u, v)
quiver(..., scale)
quiver(..., style)

Description
quiver(x,y,u,v) displays vectors (u,v) starting at (x,y). If the four
arguments are matrices of the same size, an arrow is drawn for each
corresponding element. If x and y are vectors, they are repeated: x
is transposed to a row vector if necessary and repeated to match the
number of rows of u and v; and y is transposed to a column vector
if necessary and repeated to match their number of columns. The
absolute size of arrows is scaled with the average step of the grid
given by x and y, so that they do not overlap if the grid is uniform.

If x and y are missing, their default values are [1,2,...,m] and
[1,2,...,n] respectively, where m and n are the number of rows and
columns of u and v.

With a 5th (or 3rd) argument, quiver(...,scale) multiplies the
arrow lengths by the scalar number scale. If scale is zero, arrows
are not scaled at all: u and v give directly the absolute value of the
vectors.

With a 6th (or 4th) string argument, quiver(...,style) uses the
specified style to draw the arrows.

Example
Force field; complex numbers are used to simplify computation.

scale equal;
z = fevalx(@plus, -5:0.5:5, 1j*(-5:0.5:5)’);
z0 = 0.2+0.3j;
f = 1+20*sign(z-z0)./(max(abs(z-z0).̂ 2,3));

482 Sysquake Remote ©1999-2016, Calerga Sàrl

x = real(z);
y = imag(z);
u = real(f);
v = imag(f);
quiver(x, y, u, v);

See also
plot, image contour

scale

Set the scale.

Syntax
scale([xmin,xmax,ymin,ymax])
scale([xmin,xmax])
scale([xmin,xmax,ymin,ymax,zmin,zmax])
scale(features)
scale(features, usersettablefeatures)
scale(features, [xmin,xmax,ymin,ymax])
scale(features, usersettablefeatures, [xmin,xmax,ymin,ymax])
sc = scale
(sc, type) = scale

Description
Without output argument, the scale command, which should be
placed before any other graphical command, sets the scale and scale
options. The last parameter contains the limits of the plot, either for
both x and y axes or only for the x axis in 2D graphics, or for x, y and
z axes for 3D graphics. The limits are used only if the user has not
changed them by zooming.

The first parameter(s) specify some properties of the scale, and
which one can be changed by the user. There are two ways to specify
them: with a string or with one or two integer numbers. The recom-
mended way is with a string. The list below enumerates the possible
values.

’equal’ Same linear scale for x and y axes. Typically used for
representation of the complex plane, such as the roots of a poly-
nomial or a Nyquist diagram. For 3D graphics, same effect as
daspect([1,1,1]).

’pixel’ Pixel (unit) linear scale for x and y axes. Used for diagrams
which cannot be scaled, such as block diagrams, Venn diagrams,
or special use interface. The y axis is always oriented upward.

LME Reference — base graphics 483

’lock’ See below.

’linlin’ Linear scale for both axes.

’linlog’ Linear scale for the x axis, and logarithmic scale for the
y axis.

’loglin’ Logarithmic scale for the x axis, and linear scale for the
y axis.

’loglog’ Logarithmic scale for both axes.

’lindb’ Linear scale for the x axis, and dB scale for the y axis.

’logdb’ Logarithmic scale for the x axis, and dB scale for the y
axis.

’lindb/logdb’ Linear scale for the x axis, and dB scale for the y
axis. The user can choose a logarithmic scale for the x axis, and a
logarithmic or linear scale for the y axis.

’loglog/set’ Logarithmic scale for the x and y axes, without pos-
sibility for the user to change them.

The last-but-one setting shows how to enable the options the user can
choose in Sysquake. The setting and the enabled options are sepa-
rated by a dash; if a simple setting is specified, the enabled options
are assumed to be the same. Enabling dB always permits the user to
choose a logarithmic or linear scale, and enabling a logarithmic scale
always permits to choose a linear scale. The ’equal’ option cannot
be combined with anything else. Changing the options in subsequent
redraws is ignored, because options are under the user control.

The last setting ending with /set shows how to force options
without letting the user override them. In this case, options can be
changed during redraws. SQ files with customs ways to change the
kind of scale must use this method.

When the properties are specified with one or two integer numbers,
each bit corresponds to a property. Only the properties in bold in the
table below can be set by the user, whatever the setting is.

484 Sysquake Remote ©1999-2016, Calerga Sàrl

Bit Meaning
0 log x
2 tick on x axis
3 grid for x axis
4 labels on x axis
6 log y
7 dB y
8 tick on y axis
9 grid for y axis
10 labels on y axis
12 same scale on both axes
13 minimum grid
14 maximum grid

scale lock locks the scale as if the user had done it by hand. It
fixes only the initial value; the user may change it back afterwards.

The scale is usually limited to a range of 1e-6 for linear scales and
a ratio of 1e-6 for logarithmic scales. This avoids numeric problems,
such as when a logarithmic scale is chosen and the data contain the
value 0. In some rare cases, a large scale may be required. The
’lock’ option is used to push the limits from 1e-6 to 1e-24 for both
linear and logarithmic scales. A second argument must be provided:

scale(’lock’, [xmin,xmax,ymin,ymax]);

The command must be used in a draw handler (or from the command
line interface). To add other options, use a separate scale command:

scale logdb;
scale(’lock’, [1e-5, 1e8, 1e-9, 1e9]);

The scale is locked, and the user may not unlock it. In the example
above, note also that a single string argument can be written without
quote and parenthesis if it contains only letters and digits.

With output arguments, scale returns the current scale as a vector
[xmin,xmax,ymin,ymax]. If the scale is not fixed, the vector is empty.
If only the horizontal scale is set, the vector is [xmin,xmax]. During
a mouse drag, both the horizontal and vertical scales are fixed. The
values returned by scale reflect the zoom chosen by the user. They
can be used to limit the computation of data displayed by plot to the
visible area. The optional second output argument type tells whether
a linear or a logarithmic scale is set for axis x and y; it is a string such
as ’linlin’ or ’loglin’.

Examples
Here are some suggestions for the most usual graphics:

LME Reference — base graphics 485

Time response (default linlin is fine)
Bode mag scale logdb
Bode phase scale loglin
D bode mag scale(’lindb/logdb’,[0,pi/Ts])
D bode phase scale(’linlin/loglin’,[0,pi/Ts])
Poles scale equal
D poles scale(’equal’,[-1,1,-1,1])
Nyquist scale(’equal’,[-1.5,1.5,-1.5,1.5])
Nichols scale lindb

Use of scale to display a sine in the visible x range:

scale([0,10]); % default x range between 0 and 10
sc = scale; % maybe changed by the user (1x2 or 1x4)
xmin = sc(1);
xmax = sc(2);
x = xmin + (xmax - xmin) * (0:0.01:1);

% 101 values between xmin and xmax
y = sin(x);
plot(x, y);

See also
plotoption, scalefactor

scalefactor

Change the scale displayed in axis ticks and labels.

Syntax
scalefactor(f)
f = scalefactor

Description
scalefactor(f) sets the factor used to display the ticks and the la-
bels. Its argument f can be a vector of two or three real positive num-
bers to set separately the x, y, and z axes, or a real positive scalar to
set the same factor for all axes. scalefactor([fx,fy]) is equivalent
to scalefactor([fx,fy,1]). The normal factor value is 1, so that the
ticks correspond to the graphical contents. With a different factor, the
contents are displayed with the same scaling, but the ticks and labels
are changed as if the graphical data had been scaled by the factor. For
instance, you can plot data in radians (the standard angle unit in LME)
and display ticks and labels in degrees by using a factor of 180/pi.

With an output argument, scalefactor gives the current factors
as a 2-elements vector.

486 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
Display the sine with a scale in degrees:

phi = 0:0.01:2*pi;
plot(phi, sin(phi));
scalefactor([180/pi, 1]);

See also
scale, plotoption

scaleoverview

Set the scale overview rectangle.

Syntax
scaleoverview([xmin,xmax,ymin,ymax])
scaleoverview([xmin,xmax,ymin,ymax],’xy’)
scaleoverview([xmin,xmax],’x’)
scaleoverview([ymin,ymax],’y’)

Description
scaleoverview sets the limits of a rectangular region used to pro-
vide an overview of the scale used in another plot. Typically, the
same data are displayed in two subplots: one with a large, fixed dis-
played area (set with scale) with a smaller scale overview rectangle
set with scaleoverview, and one with a smaller displayed area (set
with scale) which matches the limits set with scaleoverview in the
first plot. In Sysquake, scale synchronization is used to keep both
subplots synchronized when the user zooms or drags the data in the
second subplot or manipulates directly the scale overview rectangle.

By default, limits on axis x and y are provided. A second argument
can specify which axis has limits: ’xy’ (default), ’x’ or ’y’ (then the
first argument is an array of two elements).

See also
scale

subplotstyle

Subplot style.

Syntax
subplotstyle(name, style)
style = subplotstyle(name)

LME Reference — base graphics 487

Description
subplotstyle sets or gets the style of the current subplot. In
Sysquake’s SQ files, it should be used in draw handlers. It has the
same arguments as figurestyle, which handles the settings globally
for all subplots, or the default settings when both figurestyle and
subplotstyle are used.

Example
subplot 211;
subplotstyle(’plotbg’, FillColor=’yellow’);
subplotstyle(’frame’, LineWidth=2);
step(1, 1:3);
subplot 212;
subplotstyle(’plotbg’, FillColor=’orange’);
step(1, 1:4);

See also
figurestyle, plotset, plotfont, plotoption

text

Display text in a figure.

Syntax
text(x, y, string)
text(x, y, string, justification)
text(..., font)
text(..., id=id)

Description
With three arguments, text(x,y,string) displays a string centered
at the specified position. An optional fourth argument specifies how
the string should be aligned with respect to the position (x,y). It is a
string of one or two characters from the following set:

Char. Alignment
c Center (may be omitted)
l Left
r Right
t Top
b Bottom

For instance, ’l’ means that the string is displayed to the right of
the given position and is centered vertically, and ’rt’, that the string
is to the bottom left of the given position.

488 Sysquake Remote ©1999-2016, Calerga Sàrl

An optional trailing argument specifies the font, size, type face,
and color to use. It is a structure which is typically created with
fontset. Alternatively, named arguments can be used directly, with-
out fontset.

An ID can be specified with a named argument (not with a normal,
unnamed argument).

Examples
A line is drawn between (-1,-1) and (1,1) with labels at both ends.

plot([-1,1], [-1,1]);
text(-1,-1, ’p1’, ’tr’);
text(1, 1, ’p2’, ’bl’);

Text with font specification:

font = fontset(Font=’Times’,
Bold=true,
Size=18,
Color=[1,0,0]);

text(1.1, 4.2, ’Abc’, font);

Same font with named arguments:

text(1.1, 4.2, ’Abc’, font,
Font=’Times’,
Bold=true,
Size=18,
Color=[1,0,0]);

See also
label, fontset, sprintf

tickformat

Subplot tick format.

Syntax
tickformat(axis, format)

Description
tickformat(axis,format) specifies the format to be used for tick
labels. The first argument, axis, specified which axis is affected: it
is 1 or ’x’ for the first axis (horizontal) or 2 or ’y’ for the second
axis (vertical, on the left or the right depending on the last call to

LME Reference — base graphics 489

altscale if any). Second argument, format, is a string similar to the
first argument of sprintf. Only numeric formats are supported (%d,
%e, %f, %g, %h, %i, %k, %n, %o, %P, %x), with their options, width and
precision. Double % gives a single %, and other characters are used
literally.

The format is not used if ticks are specified with function ticks.

Examples
General format with a unit for the x axis, and fixed format with two
fractional digits for the y axis:

step(1, [1, 2, 3, 4]);
tickformat(’x’, ’%g h’);
tickformat(’y’, ’%.2f’);

See also
ticks, sprintf

ticks

Subplot ticks and tick labels.

Syntax
ticks(axis, majorTicks)
ticks(axis, majorTicks, minorTicks)
ticks(axis, majorTicks, minorTicks, tickLabels)

Description
ticks replaces default ticks (small scale marks along the plot frame
and their labels outside the frame) with custom ones.

ticks(axis,majorTicks) specifies the value of major ticks (large
ones). The first argument, axis, specified which axis is affected: it
is 1 or ’x’ for the first axis (horizontal) or 2 or ’y’ for the second
axis (vertical, on the left or the right depending on the last call to
altscale if any). Second argument, majorTicks, is an array of values
where ticks are displayed; the same scaling as the one applied to the
plot contents is used.

With a third argument, ticks(axis,majorTicks,minorTicks)
also displays minor ticks (smaller ones, typically used with a finer
spacing) specified by array minorTicks.

With a fourth argument,
ticks(axis,majorTicks,minorTicks,labels) displays labels
at the position of major ticks. Labels are given as a string of
linefeed-separated substrings, such as ’one\ntwo. If more values are

490 Sysquake Remote ©1999-2016, Calerga Sàrl

specified for major ticks than for labels, labels are reused, starting
from the first one. Superfluous labels are ignored. If no minor tick is
displayed, argument minorTicks is optional.

Values out of range are not displayed. If axis labels are specified
with function label, tick labels which would overlap are not displayed.

3D plots have always default ticks.

Examples
Bar plot where bars correspond to months:

bar([2,4,3,6]);
ticks(’x’, 1:4, ’Jan\nFeb\nMar\nApr’);

Tick labels with units and axis label:

scale([0, 10]);
step(1, [1, 2, 3, 4]);
majorTicks = 0:2:10;
minorTicks = 0:0.5:10;
labels = sprintf(’%g s\n’, majorTicks);
ticks(’x’, majorTicks, minorTicks, labels);
ticks(’y’, 0:0.1:1);
label Time;

Plot without any tick and label:

step(1, [1, 2, 3, 4]);
ticks(’x’, []);
ticks(’y’, []);

See also
label, tickformat, legend, title, text, sprintf

title

Subplot title.

Syntax
title(string)

Description
title(string) sets or changes the title of the current subplot.

With plotoption math, the title can contain MathML or LaTeX.

See also
label, legend, ticks, text, sprintf, plotoption

LME Reference — 3D graphics 491

5.40 3D Graphics

Three-dimension graphic commands enable the representation of ob-
jects defined in three dimensions x, y and z on the two-dimension
screen. The transform from the 3D space to the screen is performed
as if there were a virtual camera in the 3D space with a given posi-
tion, orientation, and angle of view (related to the focal length in a
real camera).

Projection

The projection is defined by the following parameters:

Target point The target point is a 3D vector which defines the
position where the camera is oriented to.

Projection kind Two kinds of projections are supported: ortho-
graphic and perspective.

View point The view point is a 3D vector which defines the posi-
tion of the camera. For orthographic projection, it defines a direc-
tion independent from the target position; for perspective projec-
tion, it defines a position, and the view orientation is defined by
the vector from view point to target point.

Up vector The up vector is a 3D vector which fixes the orientation
of the camera around the view direction. The projection is such that
the up vector is in a plane which is vertical in the 2D projection.
Changing it makes the projection rotate around the image of the
target.

View angle The view angle defines the part of the 3D space which
is projected onto the image window in perspective projections. It is
zero in orthographic mode.

All of these parameters can be set automatically. Here is how the
whole projection and scaling process is performed:

– Scale data separately along each direction according to daspect

– Find bounding box of all displayed data, or use limits set with
scale

– Find radius of circumscribed sphere of bounding box

– If the target point is automatic, set it to the center of the bound-
ing box; otherwise, use position set with camtarget

492 Sysquake Remote ©1999-2016, Calerga Sàrl

– If the view point is automatic, set it to direction [-3;-2;1] at
infinity in orthographic mode, or in that direction with respect to
the target point at a distance such that the view angle of the
circumscribed sphere is about 6 degrees; otherwise, use position
set with campos

– If the up vector is automatic, set it to [0,0,1] (vertical, pointing
upward); otherwise, use position set with camup

– Compute the corresponding homogeneous matrix transform

– Set the base scaling factor so that the circumscribed sphere fits
the display area

– Apply an additional zoom factor which depends on camva and
camzoom

Surface shading

Surface and mesh colors add information to the image, helping the
viewer in interpreting it. Colors specified by the style argument also
accepted by 2D graphical commands are used unchanged. Colors
specified by a single-component value, RGB colors, or implicit, are pro-
cessed differently whether lightangle and/or material have been
executed, or not. In the first case, colors depend directly on the col-
ors specified or the default value; in the second case, the Blinn-Phong
reflection model is used with flat shading. In both cases, single-color
values are mapped to colors using the current color map (set with
colormap). Commands which accept a color argument are mesh, surf,
and plotpoly.

Direct colors
If neither lightangle nor material has been executed, colors depend
only on the color argument provided with x, y, and z coordinates. If
the this argument is missing, color is obtained by mapping linearly the
z coordinates to the full range of the current color map.

Blinn-Phong reflection model
In the Blinn-Phong reflexion model, the color of a surface depends
on the intrinsic object color, the surface reflexion properties, and the
relative positions of the surface, the viewer, and light sources.

camdolly

Move view position and target.

LME Reference — 3D graphics 493

Syntax
camdolly(d)

Description
camdolly(d) translates the camera by 3x1 or 1x3 vector d, moving
the target and the view point by the same amount.

See also
campan, camorbit, campos, camproj, camroll, camtarget, camup,
camva, camzoom

camorbit

Camera orbit around target.

Syntax
camorbit(dphi, dtheta)

Description
camorbit(dphi,dtheta) rotates the camera around the target point
by angle dphi around the up vector, and by angle dtheta around the
vector pointing to the right of the projection plane. Both angles are
given in radians. A positive value of dphi makes the camera move
to the right, and a positive value of dtheta makes the camera move
down.

See also
camdolly, campan, campos, camproj, camroll, camtarget, camup,
camva, camzoom

campan

Tilt and pan camera.

Syntax
campan(dphi, dtheta)

Description
campan(dphi,dtheta) pans the camera by angle dphi and tilts it by
angle dtheta. Both angles are in radians. More precisely, the target
point is changed so that the vector from view point to target is rotated
by angle dphi around the up vector, then by angle dtheta around a
"right" vector (a vector which is horizontal in view coordinates).

494 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
camdolly, camorbit, campos, camproj, camroll, camtarget, camup,
camva, camzoom

campos

Camera position.

Syntax
campos(p)
campos auto
campos manual
p = campos

Description
campos(p) sets the view position to p. p is a 3D vector.

campos auto sets the view position to automatic mode, so that it
follows the target. campos manual sets the view position to manual
mode.

With an output argument, campos gives the current view position.

See also
camdolly, camorbit, campan, camproj, camroll, camtarget, camup,
camva, camzoom

camproj

Projection kind.

Syntax
camproj(str)
str = camproj

Description
camproj(str) sets the projection mode; string str can be either
’orthographic’ (or ’o’) for a parallel projection, or ’perspective’
(or ’p’) for a projection with a view point at a finite distance.

With an output argument, camproj gives the current projection
mode.

See also
camdolly, camorbit, campan, campos, camroll, camtarget, camup,
camva, camzoom

LME Reference — 3D graphics 495

camroll

Camera roll around view direction.

Syntax
camroll(dalpha)

Description
camroll(dalpha) rotates the up vector by angle dalpha around the
vector from view position to target. dalpha is given in radians. A
positive value makes the scene rotate counterclockwise.

See also
camdolly, camorbit, campan, campos, camproj, camtarget, camup,
camva, camzoom

camtarget

Target position.

Syntax
camtarget(p)
camtarget auto
camtarget manual
p = camtarget

Description
camtarget(p) sets the target to p. p is a 3D vector.

camtarget auto sets the target to automatic mode, so that it fol-
lows the center of the objects which are drawn. camtarget manual
sets the target to manual mode.

With an output argument, camtarget gives the current target.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camup,
camva, camzoom

camup

Up vector.

496 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
camup(p)
camup auto
camup manual
p = camup

Description
camup(p) sets the up vector to p. p is a 3D vector.

camup auto sets the up vector to [0,0,1]. camup manual does
nothing.

With an output argument, camup gives the current up vector.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camtarget,
camva, camzoom

camva

View angle.

Syntax
camva(va)
va = camva

Description
camva(va) sets the view angle to va, which is expressed in degrees.
The projection mode is set to ’perspective’. The scale is adjusted
so that the graphics have about the same size.

With an output argument, camva gives the view angle in degrees,
which is 0 for an orthographic projection.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camtarget,
camup, camzoom

camzoom

Zoom in or out.

Syntax
camzoom(f)

LME Reference — 3D graphics 497

Description
camzoom(f) scales the projection by a factor f. The image grows if f
is larger than one, and shrinks if it is smaller.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camtarget,
camup, camva

contour3

Level curves in 3D space.

Syntax
contour3(z)
contour3(z, [xmin, xmax, ymin, ymax])
contour3(z, [xmin, xmax, ymin, ymax], levels)
contour3(z, [xmin, xmax, ymin, ymax], levels, style)

Description
contour3(z) plots in 3D space seven contour lines corresponding to
the surface whose samples at equidistant points 1:size(z,2) in the x
direction and 1:size(z,1) on the y direction are given by z. Contour
lines are at equidistant levels. With a second non-empty argument
[xmin, xmax, ymin, ymax], the samples are at equidistant points
between xmin and xmax in the x direction and between ymin and ymax
in the y direction.

The optional third argument levels, if non-empty, gives the num-
ber of contour lines if it is a scalar or the levels themselves if it is a
vector.

The optional fourth argument is the style of each line, from the
minimum to the maximum level (styles are recycled if necessary). The
default style is ’kbrmgcy’.

See also
contour, mesh, surf

daspect

Scale ratios along x, y and z axis.

Syntax
daspect([rx,ry,rz])
daspect([])
R = daspect

498 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
daspect(R) specifies the scale ratios along x, y and z axis. Argument
R is a vector of 3 elements rx, ry and rz. Coordinates in the 3D space
are divided by rx along the x axis, and so on, before the projection
is performed. For example, a box whose size is [2;5;3] would be
displayed as a cube with daspect([2;5;3]).

daspect([]) sets the scale ratios so that the bounding box of 3D
elements is displayed as a cube.

With an output argument, R=daspect gives the current scale ratios
as a vector of 3 elements.

See also
scale

lightangle

Set light sources in 3D world.

Syntax
lightangle
lightangle(az, el)

Description
lightangle(az,el) set lighting source(s) at infinity, with asimuth az
and elevation el, both in radians. With missing input argument, the
default azimuth is 4 and the default elevation is 1. If az and el are
vectors, they must have the same size (except if one of them is a
scalar, then it is replicated as needed); lightangle sets multiple light
sources.

See also
material

line3

Plot straight lines in 3D space.

Syntax
line3(A, b)
line3(V, P0)
line3(A, b, style)
line3(A, b, style, id)

LME Reference — 3D graphics 499

Description
line3 displays one or several straight line(s) in the 3D space. Each
line is defined by two implicit equations or one explicit, parametric
equation.

Implicit equation: Lines are defined by two equations of the form
1 + 2y + 3z = b. The first argument of line3 is a matrix which
contains the coefficients 1 in the first column, 2 in the second col-
umn, and 3 in the third column; two rows define a different line. The
second argument is a column vector which contains the coefficients
b. If one of these arguments has two rows and the other has several
pairs, the same rows are reused multiple times.

Explicit equations: Lines are defined by equations of the form
P = P0 + λV where P0 is a point of the line, V a vector which defines
its direction, and λ a real parameter. The first argument of line3 is a
matrix which contains the coefficients in the first column, y in the
second column and z in the third column. The second argument is a
matrix which contains the coefficients 0 in the first column, y0 in the
second column and z0 in the third column.

The optional third and fourth arguments are the same as for all
graphical commands.

Example
Implicit or parametric forms of a vertical line at x=5, y=6:

line3([1,0,0;0,1,0], [5;6])
line3([0, 0, 1], [5, 6, 0])

See also
plot3, line

material

Surface reflexion properties.

Syntax
material(p)

Description
material(p) sets the reflexion properties of the Blinn-Phong model of
following surfaces drawn with surf and plotpoly. Argument p is a
scalar or a vector of two real values between 0 and 1. The first or only
element, ka, is the weight of ambiant light; the second element, kd, is
the weight of diffuse light reflected from all light sources.

500 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
lightangle

mesh

Plot a mesh in 3D space.

Syntax
mesh(x, y, z)
mesh(z)
mesh(x, y, z, color)
mesh(z, color)
mesh(..., kind)
mesh(..., kind, style)
mesh(..., kind, style, id)

Description
mesh(x,y,z) plots a mesh defined by 2-D arrays x, y and z. Ar-
guments x and y must have the same size as z or be vectors of
size(z,2) and size(z,1) elements, respectively. If x and y are miss-
ing, their default values are coordinates from 1 to size(z,2) along
x axis and from 1 to size(z,1) along y axis. Color is obtained by
mapping the full range of z values to the color map.

mesh(x,y,z,color) maps values of array color to the color map.
color must have the same size as z and contain values between 0
and 1, which are mapped to the color map.

mesh(...,kind) specifies which side of the mesh is visible. kind
is a string of 1 or 2 characters: ’f’ if the front side is visible (the side
where increasing y are on the left of increasing x coordinates), and
’b’ if the back side is visible. Default ’’ is equivalent to ’fb’.

mesh(...,style) specifies the line or symbol style of the mesh.
The default ’’ is to map z or color values to the color map.

mesh(...,id) specifies the ID used for interactivity in Sysquake.

Example
(X, Y) = meshgrid([-2:0.2:2]);
Z = X.*exp(-X.̂ 2-Y.̂ 2);
mesh(X, Y, Z);

See also
plot3, surf, plotpoly

plot3

Generic 3D plot.

LME Reference — 3D graphics 501

Syntax
plot3(x, y, z)
plot3(x, y, z, style)
plot3(x, y, z, style, id)

Description
The command plot3 displays 3D graphical data in the current figure.
The data are given as three vectors of coordinates x, y and z. De-
pending on the style, the points are displayed as individual marks or
are linked with lines.

If x, y and z are matrices, each row is considered as a separate line
or set of marks; row or column vectors are replicated to match the size
of matrix arguments if required.

plot3(...,id) specifies the ID used for interactivity in Sysquake.

Example
Chaotic attractor of the Shimizu-Morioka system:

(t,x) = ode45(@(t,x) [x(2); (1-x(3))*x(1)-0.75*x(2); x(1)̂ 2-0.45*x(3)],
[0,300], [1;1;1]);
plot3(x(:,1)’, x(:,2)’, x(:,3)’, ’r’);
label x y z;
campos([-1.5; -1.4; 3.1]);

See also
line3, plotpoly, plot

plotpoly

Plot polygons in 3D space.

Syntax
plotpoly(x, y, z, ind)
plotpoly(x, y, z, ’strip’)
plotpoly(x, y, z, ’fan’)
plotpoly(x, y, z, color, ind)
plotpoly(x, y, z, color, ’strip’)
plotpoly(x, y, z, color, ’fan’)
plotpoly(..., vis)
plotpoly(..., vis, style)
plotpoly(..., vis, style, id)

502 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
plotpoly(x,y,z,ind) plots polygons whose vertices are given by
vectors x, y and z. Rows of argument ind contain the indices of each
polygon in arrays x, y, and z. Vertices can be shared by several poly-
gons. Color of each polygon is mapped linearly from the z coordinate
of the center of gravity of its vertices to the color map. Each poly-
gon can be concave, but must be planar and must not self-intersect
(different polygons may intersect).

plotpoly(x,y,z,’strip’) plots a strip of triangles. Triangles are
made of three consecutive vertices; their indices could be defined by
the following array ind_strip:

ind_strip = ...
[1 2 3
3 2 4
3 4 5
5 4 6
5 6 7
etc.];

Ordering is such that triangles on the same side of the strip have the
same orientation.

plotpoly(x,y,z,’fan’) plots triangles which share the first ver-
tex and form a fan. Their indices could be defined by the following
array ind_fan:

ind_fan = ...
[1 2 3
1 3 4
1 4 5
etc.];

plotpoly(x,y,z,color,...) uses color instead of z to set the filling
color of each polygon. color is always a real double array (or scalar)
whose elements are between 0 and 1. How it is interpreted depends
on its size:

– A scalar defines the color of all polygons; it is mapped to the color
map.

– A vector of three elements defines the RGB color of all polygons
(row vector if there are 3 vertices to avoid ambiguity).

– A vector with as many elements as x, y and z defines the color
of each vertex (column vector if there are 3 vertices to avoid
ambiguity). Polygons have the mean value of all their vertices,
which is mapped to the color map.

LME Reference — 3D graphics 503

– An array with as many columns as elements in x, y and z defines
the RGB color of each vertex. Polygons have the mean value of
all their vertices.

plotpoly(...,vis) uses string vis to specify which side of the sur-
face is visible: ’f’ for front only, ’b’ for back only, or ’fb’ or ’bf’ for
both sides. The front side is defined as the one where vertices have
an anticlockwise orientation. The default is ’f’.

plotpoly(...,vis,style) uses string style to specify the style
of edges.

plotpoly(...,id) specifies the ID used for interactivity in
Sysquake.

See also
plot3, surf

sensor3

Make graphical element sensitivive to 3D interactive displacement.

Syntax
sensor3(type, param, id)
sensor3(type, param, typeAlt, paramAlt, id)

Description
sensor3(type,param,id) specifies how a 3D element can be dragged
interactively. Contrary to 2D graphics where the mapping between the
mouse cursor and the graphical coordinates depends on two separate
scaling factors, manipulation in 3D space must use a surface as an
additional constraint. sensor3 specifies this surface for a graphical
object whose ID is the same as argument id.

The constraint surface is specified with string type and numeric
array param. It always contains the selected point. For instance, if the
user clicks the second point of plot3([1,2],[5,3],[2,4],’’,1) and
sensor3 defines a horizontal plane, the move lies in horizontal plane
z=4. In addition to position _p1, parameters specific to the constraint
surface are provided in special variable _q, a vector of two elements.

type = ’plane’ The constraint surface is the plane defined by
the selected point _p0 and two vectors [vx1;vy1;vz1] and
[vx2;vy2;vz2] given in argument param = [vx1,vy1,vz1;
vx2,vy2,vz2]. During the drag, _q contains the coefficients of
these two vectors, such that _p1 = _p0+_q’*param’.

504 Sysquake Remote ©1999-2016, Calerga Sàrl

type = ’sphere’ The constraint surface is a sphere whose
center is defined by a point param = [px,py,pz]. Its R is such
that the surface contains the selected point _p0. During the
drag, _q contains the spherical coordinates phi and theta,
such that _p1 = param’ + R * [cos(q_(1))*cos(q_(2));
sin(q_(1))*cos(q_(2)); sin(q_(2))].

With five input arguments,
sensor3(type,param,typeAlt,paramAlt,id) specifies an
alternative constraint surface used when the modifier key is held
down.

Examples
(simple XY plane...)

(phi/theta without modifier, R with modifier with plane and ignored
2nd param)

See also
plot3, mesh, plotpoly, surf

surf

Plot a surface defined by a grid in 3D space.

Syntax
surf(x, y, z)
surf(z)
surf(x, y, z, color)
surf(z, color)
surf(..., vis)
surf(..., vis, style)
surf(..., vis, style, id)

Description
surf(x,y,z) plots a surface defined by 2-D arrays x, y and z. Ar-
guments x and y must have the same size as z or be vectors of
size(z,2) and size(z,1) elements, respectively. If x and y are miss-
ing, their default values are coordinates from 1 to size(z,2) along x
axis and from 1 to size(z,1) along y axis. Color of each surface cell
is obtained by mapping the average z values to the color map.

surf(x,y,z,color) maps values of array color to the color map.
color must have the same size as z and contain values between 0
and 1.

LME Reference — dynamical system graphics 505

surf(...,vis) specifies which side of the surface is visible. vis is
a string of 1 or 2 characters: ’f’ if the front side is visible (the side
where increasing y are on the left of increasing x coordinates), and
’b’ if the back side is visible. Default ’’ is equivalent to ’fb’.

surf(...,style) specifies the line or symbol style of the mesh
between surface cells, or the fill style of the surface. The default ’’
is to map z or color values to the color map for the surface cells and
not to draw cell bounds.

mesh(...,id) specifies the ID used for interactivity in Sysquake.

Example
(X, Y) = meshgrid([-2:0.2:2]);
Z = X.*exp(-X.̂ 2-Y.̂ 2);
surf(X, Y, Z, ’k’);

See also
plot3, mesh, plotpoly

5.41 Graphics for Dynamical Systems

Graphical commands described in this section are related to automatic
control. They display the time responses and frequency responses of
linear time-invariant systems defined by transfer functions or state-
space models in continuous time (Laplace transform) or discrete time
(z transform).

Some of these functions can return results in output arguments
instead of displaying them. These values depend not only on the input
arguments, but also on the current scale of the figure. For instance,
the set of frequencies where the response of the system is evaluated
for the Nyquist diagram is optimized in the visible area. Option Range
of responseset can be used when this behavior is not suitable, such
as for phase portraits using lsim. Output can be used for uncommon
display purposes such as special styles, labels, or export. Evaluation
or simulation functions not related to graphics, like polyval, ode45 or
filter, are better suited to other usages.

bodemag

Magnitude Bode diagram of a continuous-time system.

Syntax
bodemag(numc, denc)
bodemag(numc, denc, w)

506 Sysquake Remote ©1999-2016, Calerga Sàrl

bodemag(numc, denc, opt)
bodemag(numc, denc, w, opt)
bodemag(Ac, Bc, Cc, Dc)
bodemag(Ac, Bc, Cc, Dc, w)
bodemag(Ac, Bc, Cc, Dc, opt)
bodemag(Ac, Bc, Cc, Dc, w, opt)
bodemag(..., style)
bodemag(..., style, id)
(mag, w) = bodemag(...)

Description
bodemag(numc,denc) plots the magnitude of the frequency response
of the continuous-time transfer function numc/denc. The range of fre-
quencies is selected automatically or can be specified in an optional
argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

bodemag(Ac,Bc,Cc,Dc) plots the magnitude of the frequency
response Y(jω)/U(jω) of the continuous-time state-space model
(Ac,Bc,Cc,Dc) defined as

jωX(jω) = AcX(jω) + BcU(jω)
Y(jω) = CcX(jω) + DcU(jω)

With output arguments, bodemag gives the magnitude and the fre-
quency as column vectors. No display is produced.

Examples
Green plot for

�

�1/(s3 + 2s2 + 3s + 4)
�

� with s = jω (see Fig. 5.9):

bodemag(1, [1, 2, 3, 4], ’g’);

The same plot, between ω = 0 and ω = 10:

scale([0,10]);
bodemag(1, [1, 2, 3, 4], ’g’);

See also
bodephase, dbodemag, sigma, responseset, plotset

bodephase

Phase Bode diagram for a continuous-time system.

LME Reference — dynamical system graphics 507

1 10

-60

-40

-20

scale(’logdb’); bodemag(1, [1,2,3,4])

Figure 5.9 scale(’logdb’); bodemag(1, [1,2,3,4])

Syntax
bodephase(numc, denc)
bodephase(numc, denc, w)
bodephase(numc, denc, opt)
bodephase(numc, denc, w, opt)
bodephase(Ac, Bc, Cc, Dc)
bodephase(Ac, Bc, Cc, Dc, w)
bodephase(Ac, Bc, Cc, Dc, opt)
bodephase(Ac, Bc, Cc, Dc, w, opt)
bodephase(..., style)
bodephase(..., style, id)
(phase, w) = bodephase(...)

Description
bodephase(numc,denc) plots the phase of the frequency response of
the continuous-time transfer function numc/denc. The range of fre-
quencies is selected automatically or can be specified in an optional
argument w, a vector of frequencies.

Further options (such as time delay) can be provided in a structure
opt created with responseset; fields Delay and Range are utilized.
The optional arguments style and id have their usual meaning.

bodephase(Ac,Bc,Cc,Dc) plots the phase of the frequency
response Y(jω)/U(jω) of the continuous-time state-space model
(Ac,Bc,Cc,Dc) defined as

jωX(jω) = AcX(jω) + BcU(jω)

508 Sysquake Remote ©1999-2016, Calerga Sàrl

1 10

-4

-2

scale(’loglin’); bodephase(1, [1,2,3,4])

Figure 5.10 scale(’loglin’); bodephase(1, [1,2,3,4])

Y(jω) = CcX(jω) + DcU(jω)

With output arguments, bodephase gives the phase and the frequency
as column vectors. No display is produced.

Example
Green plot for rg(1/(s3 + 2s2 + 3s + 4)), with s = jω (see Fig. 5.10):

bodephase(1, [1, 2, 3, 4], ’g’);

See also
bodemag, dbodephase, responseset, plotset

dbodemag

Magnitude Bode diagram for a discrete-time system.

Syntax
dbodemag(numd, dend, Ts)
dbodemag(numd, dend, Ts, w)
dbodemag(numd, dend, Ts, opt)
dbodemag(numd, dend, Ts, w, opt)
dbodemag(Ad, Bd, Cd, Dd, Ts)
dbodemag(Ad, Bd, Cd, Dd, Ts, w)
dbodemag(Ad, Bd, Cd, Dd, Ts, opt)

LME Reference — dynamical system graphics 509

dbodemag(Ad, Bd, Cd, Dd, Ts, w, opt)
dbodemag(..., style)
dbodemag(..., style, id)
(mag, w) = dbodemag(...)

Description
dbodemag(numd,dend,Ts) plots the magnitude of the frequency re-
sponse of the discrete-time transfer function numd/dend with sampling
period Ts. The range of frequencies is selected automatically or can
be specified in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dbodemag(Ad,Bd,Cd,Dd,Ts) plots the magnitude of the frequency
response Y(jω)/U(jω) of the discrete-time state-space model
(Ad,Bd,Cd,Dd) defined as

zX(z) = AdX(z) + BdU(z)
Y(z) = CdX(z) + DdU(z)

where z = ejωTs .
With output arguments, dbodemag gives the magnitude and the fre-

quency as column vectors. No display is produced.

Example
dbodemag(1,poly([0.9,0.7+0.6j,0.7-0.6j]),1);

See also
bodemag, dbodephase, dsigma, responseset, plotset

dbodephase

Phase Bode diagram for a discrete-time system.

Syntax
dbodephase(numd, dend, Ts)
dbodephase(numd, dend, Ts, w)
dbodephase(numd, dend, Ts, opt)
dbodephase(numd, dend, Ts, w, opt)
dbodephase(Ad, Bd, Cd, Dd, Ts)
dbodephase(Ad, Bd, Cd, Dd, Ts, w)
dbodephase(Ad, Bd, Cd, Dd, Ts, opt)
dbodephase(Ad, Bd, Cd, Dd, Ts, w, opt)
dbodephase(..., style)
dbodephase(..., style, id)
(phase, w) = dbodephase(...)

510 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
dbodemag(numd,dend,Ts) plots the phase of the frequency response
of the discrete-time transfer function numd/dend with sampling period
Ts. The range of frequencies is selected automatically or can be spec-
ified in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dbodephase(Ad,Bd,Cd,Dd,Ts) plots the phase of the frequency
response Y(jω)/U(jω) of the discrete-time state-space model
(Ad,Bd,Cd,Dd) defined as

zX(z) = AdX(z) + BdU(z)
Y(z) = CdX(z) + DdU(z)

where z = ejωTs .
With output arguments, dbodephase gives the phase and the fre-

quency as column vectors. No display is produced.

Example
dbodephase(1,poly([0.9,0.7+0.6j,0.7-0.6j]),1);

See also
bodephase, dbodemag, responseset, plotset

dimpulse

Impulse response plot of a discrete-time linear system.

Syntax
dimpulse(numd, dend, Ts)
dimpulse(numd, dend, Ts, opt)
dimpulse(Ad, Bd, Cd, Dd, Ts)
dimpulse(Ad, Bd, Cd, Dd, Ts, opt)
dimpulse(..., style)
dimpulse(..., style, id)
(y, t) = dimpulse(...)

Description
dimpulse(numd,dend,Ts) plots the impulse response of the discrete-
time transfer function numd/dend with sampling period Ts.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

LME Reference — dynamical system graphics 511

dimpulse(Ad,Bd,Cd,Dd,Ts) plots the impulse response of the
discrete-time state-space model (Ad,Bd,Cd,Dd) defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where u(k) is a unit discrete impulse. The state-space model must
have a scalar input, and may have a scalar or vector output.

With output arguments, dimpulse gives the output and the time as
column vectors. No display is produced.

Example
dimpulse(1, poly([0.9,0.7+0.6j,0.7-0.6j]), 1, ’r’);

See also
impulse, dstep, dlsim, dinitial, responseset, plotset

dinitial

Time response plot of a discrete-time linear state-space model with
initial conditions.

Syntax
dinitial(Ad, Bd, Cd, Dd, Ts, x0)
dinitial(Ad, Cd, Ts, x0)
dinitial(..., opt)
dinitial(..., style)
dinitial(..., style, id)
(y, t) = dinitial(...)

Description
dinitial(Ad,Bd,Cd,Dd,Ts,x0) plots the output(s) of the discrete-
time state-space model (Ad,Bd,Cd,Dd) with null input and initial state
x0. The model is defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where u(k) is null. Sampling period is Ts. The state-space model may
have a scalar or vector output.

Since there is no system input, matrices Bd and Dd are not used.
They can be omitted.

512 Sysquake Remote ©1999-2016, Calerga Sàrl

The simulation time range can be provided in a structure opt cre-
ated with responseset. It is a vector of two elements, the start time
and the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

The optional arguments style and id have their usual meaning.
With output arguments, dinitial gives the output and the time as

column vectors. No display is produced.

See also
initial, dimpulse, responseset, plotset

dlsim

Time response plot of a discrete-time linear system with arbitrary in-
put.

Syntax
dlsim(numd, dend, u, Ts)
dlsim(Ad, Bd, Cd, Dd, u, Ts)
dlsim(Ad, Bd, Cd, Dd, u, Ts, x0)
dlsim(..., opt)
dlsim(..., style)
dlsim(..., style, id)
dlsim(..., opt, style)
dlsim(..., opt, style, id)
(y, t) = dlsim(...)

Description
dlsim(numd,dend,u,Ts) plots the time response of the discrete-time
transfer function numd/dend with sampling period Ts. The input is
given in real vector u, where the element i corresponds to time
(i-1)*Ts. Input samples before 0 and after length(u)-1 are 0.

dlsim(Ad,Bd,Cd,Dd,u,Ts) plots the time response of the discrete-
time state-space model (Ad,Bd,Cd,Dd) defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where the system input at time sample k is u(k,:)’. For single-input
systems, u can also be a row vector.

dlsim(Ad,Bd,Cd,Dd,u,Ts,x0) starts with initial state x0 at time
t=0. The length of x0 must match the number of states. The default
initial state is the zero vector.

LME Reference — dynamical system graphics 513

0 50
0

10

dlsim

Figure 5.11 dlsim(1, poly([0.9,0.7+0.6j,0.7-0.6j]), u)

The simulation time range can be provided in a structure opt cre-
ated with responseset. It is a vector of two elements, the start time
and the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

The optional arguments style and id have their usual meaning.
With output arguments, dlsim gives the output and the time as

column vectors (or an array for the output of a multiple-output state-
space model, where each row represents a sample). No display is
produced.

Example
Simulation of a third-order system with a rectangular input (see
Fig. 5.11):

u = repmat([ones(1,10), zeros(1,10)], 1, 3);
dlsim(1, poly([0.9,0.7+0.6j,0.7-0.6j]), u, 1, ’rs’);

See also
dstep, dimpulse, dinitial, lsim, responseset, plotset

dnichols

Nichols diagram of a discrete-time system.

514 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
dnichols(numd, dend)
dnichols(numd, dend, w)
dnichols(numd, dend, opt)
dnichols(numd, dend, w, opt)
dnichols(..., style)
dnichols(..., style, id)
w = dnichols(...)
(mag, phase) = dnichols(...)
(mag, phase, w) = dnichols(...)

Description
dnichols(numd,dend) displays the Nichols diagram of the discrete-
time transfer function given by polynomials numd and dend. In dis-
crete time, the Nichols diagram is the locus of the complex values
of the transfer function evaluated at ejω, where ω is a real number
between 0 and π inclusive, displayed in the phase-magnitude plane.
Usually, the magnitude is displayed with a logarithmic or dB scale; use
scale(’lindb’) or scale(’linlog/lindb’) before dnichols.

The range of frequencies is selected automatically between 0 and
π or can be specified in an optional argument w, a vector of normalized
frequencies.

Further options can be provided in a structure opt created with
responseset; fields NegFreq and Range are utilized. The optional ar-
guments style and id have their usual meaning.

With output arguments, dnichols gives the magnitude and phase
of the frequency response and the frequency as column vectors. No
display is produced.

In Sysquake, when the mouse is over a Nichols diagram, in addition
to the magnitude and phase which can be retrieved with _y0 and _x0,
the normalized frequency is obtained in _q.

Example
scale(’lindb’);
ngrid;
dnichols(3, poly([0.9,0.7+0.6j,0.7-0.6j]))

See also
nichols, ngrid, dnyquist, responseset, plotset

dnyquist

Nyquist diagram of a discrete-time system.

LME Reference — dynamical system graphics 515

Syntax
dnyquist(numd, dend)
dnyquist(numd, dend, w)
dnyquist(numd, dend, opt)
dnyquist(numd, dend, w, opt)
dnyquist(..., style)
dnyquist(..., style, id)
w = dnyquist(...)
(re, im) = dnyquist(...)
(re, im, w) = dnyquist(...)

Description
The Nyquist diagram of the discrete-time transfer function given by
polynomials numd and dend is displayed in the complex plane. In dis-
crete time, the Nyquist diagram is the locus of the complex values of
the transfer function evaluated at ejω, where ω is a real number be-
tween 0 and π inclusive (other definitions include the range between
π and 2π, which gives a symmetric diagram with respect to the real
axis).

The range of frequencies is selected automatically between 0 and
π or can be specified in an optional argument w, a vector of normalized
frequencies.

Further options can be provided in a structure opt created with
responseset; fields NegFreq and Range are utilized. The optional ar-
guments style and id have their usual meaning.

With output arguments, dnichols gives the real and imaginary
parts of the frequency response and the frequency as column vectors.
No display is produced.

In Sysquake, when the mouse is over a Nyquist diagram, in addition
to the complex value which can be retrieved with _z0 or _x0 and _y0,
the normalized frequency is obtained in _q.

Example
Nyquist diagram with the same scale along both x and y axis and a
Hall chart grid (reduced to a horizontal line) (see Fig. 5.12)

scale equal;
hgrid;
dnyquist(3, poly([0.9,0.7+0.6j,0.7-0.6j]))

See also
nyquist, hgrid, dnichols, responseset, plotset

dsigma

Singular value plot for a discrete-time state-space model.

516 Sysquake Remote ©1999-2016, Calerga Sàrl

-50 0 50
-40

-20

0

20

40
dnyquist

Figure 5.12 dnyquist(3, poly([0.9,0.7+0.6j,0.7-0.6j]))

Syntax
dsigma(Ad, Bd, Cd, Dd, Ts)
dsigma(Ad, Bd, Cd, Dd, Ts, w)
dsigma(Ad, Bd, Cd, Dd, Ts, opt)
dsigma(Ad, Bd, Cd, Dd, Ts, w, opt)
dsigma(..., style)
dsigma(..., style, id)
(sv, w) = dsigma(...)

Description
dsigma(Ad,Bd,Cd,Dd,Ts) plots the singular values of the frequency
response of the discrete-time state-space model (Ad,Bd,Cd,Dd) de-
fined as

zX(z) = AdX(z) + BdU(z)
Y(z) = CdX(z) + DdU(z)

where z = ejωTs and Ts is the sampling period.
Further options can be provided in a structure opt created with

responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dsigma is the equivalent of dbodemag for multiple-input systems.
For single-input systems, it produces the same plot.

The range of frequencies is selected automatically or can be speci-
fied in an optional argument w, a vector of frequencies.

With output arguments, dsigma gives the singular values and the
frequency as column vectors. No display is produced.

LME Reference — dynamical system graphics 517

See also
dbodemag, dbodephase, sigma, responseset, plotset

dstep

Step response plot of a discrete-time linear system.

Syntax
dstep(numd, dend, Ts)
dstep(numd, dend, Ts, opt)
dstep(Ad, Bd, Cd, Dd, Ts)
dstep(Ad, Bd, Cd, Dd, Ts, opt)
dstep(..., style)
dstep(..., style, id)
(y, t) = dstep(...)

Description
dstep(numd,dend,Ts) plots the step response of the discrete-time
transfer function numd/dend with sampling period Ts.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dstep(Ad,Bd,Cd,Dd,Ts) plots the step response of the discrete-
time state-space model (Ad,Bd,Cd,Dd) defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where u(k) is a unit step. The state-space model must have a scalar
input, and may have a scalar or vector output.

With output arguments, dstep gives the output and the time as
column vectors. No display is produced.

Examples
Step response of a discrete-time third-order system (see Fig. 5.13):

dstep(1, poly([0.9,0.7+0.6j,0.7-0.6j]), 1, ’g’);

Step response of a state-space model with two outputs, and a style ar-
gument which is a struct array of two elements to specify two different
styles:

A = [-0.3,0.1;-0.8,-0.4];
B = [2;3];
C = [1,3;2,1];
D = [2;1];
style = {Color=’navy’,LineWidth=3; Color=’red’,LineStyle=’-’};
step(A, B, C, D, style);

518 Sysquake Remote ©1999-2016, Calerga Sàrl

0 20
0

20

dstep(1, poly([0.9,0.7+0.6j,0.7-0.6j]), 0.2, ’s’)

Figure 5.13 dstep(1,poly([.9,.7+.6j,.7-.6j]),0.2,’s’)

See also
dimpulse, dlsim, step, hstep, responseset, plotset

erlocus

Root locus of a polynomial with coefficients bounded by an ellipsoid.

Syntax
erlocus(C0, P)
erlocus(C0, P, sizes, colors)

Description
erlocus displays the set of the roots of all the polynomial whose coef-
ficients are bounded by an ellipsoid defined by C0 and P. The polyno-
mials are defined as C0 + [0,dC], where dC*inv(P)*dC’ < 1.

If sizes and colors are provided, sizes must be a vector of n val-
ues and colors an n-by-3 matrix whose columns correspond respec-
tively to the red, green, and blue components. The locus correspond-
ing to dC*inv(P)*dC’ < sizes(i)̂ 2 is displayed with colors(i,:).
The vector sizes must be sorted from the smallest to the largest ellip-
soid. The default values are sizes = [0.1;0.5;1;2] and colors =
[0,0,0;0,0,1;0.4,0.4,1;0.8,0.8,0.8] (i.e. black, dark blue, light
blue, and light gray).

Warning: depending on the size of the figure (in pixels) and the
speed of the computer, the computation may be slow (several sec-
onds). The number of sizes does not have a big impact.

LME Reference — dynamical system graphics 519

-2 0 2
-2

0

2
erlocus

Figure 5.14 erlocus(poly([.8,.7+.6j,.7-.6j]), eye(3))

Example
Roots of the polynomial (z − 0.8)(z − 0.7− 0.6j)(z − 0.7+ 0.6j), where
the coefficients, in R3, have an uncertainty bounded by a unit sphere
(see Fig. 5.14).

scale(’equal’, [-2,2,-2,2]);
erlocus(poly([0.8, 0.7+0.6j, 0.7-0.6j]), eye(3));
zgrid;

See also
plotroots, rlocus

hgrid

Hall chart grid.

Syntax
hgrid
hgrid(style)

Description
hgrid plots a Hall chart in the complex plane of the Nyquist diagram.
The Hall chart represents circles which correspond to the same mag-
nitude or phase of the closed-loop frequency response. The optional
argument specifies the style.

520 Sysquake Remote ©1999-2016, Calerga Sàrl

-2 0 2
-2

0

2
scale(’equal’, [-2,2,-2,2]); hgrid;

Figure 5.15 Result of hgrid when the whole grid is displayed.

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the unit circle and the real axis are displayed. The whole grid is made
of the circles corresponding to a closed-loop magnitude of plus or mi-
nus 0, 2, 4, 6, 10, and 20 dB; and to a closed-loop phase of plus or
minus 0, 10, 20, 30, 45, 60, and 75 degrees.

Example
Hall chart grid with a Nyquist diagram (see Fig. 5.15):

scale(’equal’, [-1.5, 1.5, -1.5, 1.5]);
hgrid;
nyquist(20, poly([-1,-2+1j,-2-1j]))

See also
ngrid, nyquist, plotset, plotoption

hstep

Step response plot of a discrete-time transfer function followed by a
continuous-time transfer function.

Syntax
hstep(numd, dend, Ts, numc, denc)
hstep(numd, dend, Ts, numc, denc, style)
hstep(numd, dend, Ts, numc, denc, style, id)

LME Reference — dynamical system graphics 521

0 5
0

0.2

scale([0,5]); hstep(1,[1,-0.5],1,1,[1,5])

Figure 5.16 scale([0,5]); hstep(1,[1,-0.5],1,1,[1,5])

Description
A step is filtered first by numd/dend, a discrete-time transfer
function with sampling period Ts; the resulting signal is converted
to continuous-time with a zero-order hold, and filtered by the
continuous-time transfer function numc/denc.

Most discrete-time controllers are used with a zero-order hold and
a continuous-time system. hstep can display the simulated output of
the system when a step is applied somewhere in the loop, e.g. as
a reference signal or a disturbance. The transfer function numd/dend
should correspond to the transfer function between the step and the
system input; the transfer function numc/denc should be the model of
the system.

Note that the simulation is performed in open loop. If an unsta-
ble system is stabilized with a discrete-time feedback controller, all
closed-loop transfer functions are stable; however, the simulation with
hstep, which uses the unstable model of the system, may diverge if
it is run over a long enough time period, because of round-off errors.
But in most cases, this is not a problem.

Example
Exact simulation of the output of a continuous-time system whose in-
put comes from a zero-order hold converter (see Fig. 5.16):

% unstable system continuous-time transfer function
num = 1;
den = [1, -1];

522 Sysquake Remote ©1999-2016, Calerga Sàrl

% sampling at Ts = 1 (too slow, only for illustration)
Ts = 1;
[numd, dend] = c2dm(num, den, Ts);
% stabilizing proportional controller
kp = 1.5;
% transfer function between ref. signal and input
b = conv(kp, dend);
a = addpol(conv(kp, numd), dend);
% continuous-time output for a ref. signal step
scale([0,10]);
hstep(b, a, Ts, num, den);
% discrete-time output (exact)
dstep(conv(b, numd), conv(a, dend), Ts, ’o’);

See also
step, dstep, plotset

impulse

Impulse response plot of a continuous-time linear system.

Syntax
impulse(numc, denc)
impulse(numc, denc, opt)
impulse(Ac, Bc, Cc, Dc)
impulse(Ac, Bc, Cc, Dc, opt)
impulse(..., style)
impulse(..., style, id)
(y, t) = impulse(...)

Description
impulse(numc,denc) plots the impulse response of the continuous-
time transfer function numc/denc.

Further options can be provided in a structure opt created with
responseset; fields Delay and Range are utilized. The optional argu-
ments style and id have their usual meaning.

impulse(Ac,Bc,Cc,Dc) plots the impulse response of the
continuous-time state-space model (Ac,Bc,Cc,Dc) defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where u is a Dirac impulse. The state-space model must have a scalar
input, and may have a scalar or vector output.

With output arguments, impulse gives the output and the time as
column vectors. No display is produced.

LME Reference — dynamical system graphics 523

Example
impulse(1, 1:4, ’m’);

See also
dimpulse, step, lsim, initial, responseset, plotset

initial

Time response plot for a continuous-time state-space model with initial
conditions.

Syntax
initial(Ac, Bc, Cc, Dc, x0)
initial(Ac, Cc, x0)
initial(Ac, Bc, Cc, Dc, x0, opt)
initial(..., style)
initial(..., style, id)
(y, t) = initial(...)

Description
initial(Ac,Bc,Cc,Dc,x0) plots the output(s) of the continuous-time
state-space model (Ac,Bc,Cc,Dc) with null input and initial state x0.
The model is defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where u(t) is null. The state-space model may have a scalar or vector
output.

Since there is no system input, matrices Bd and Dd are not used.
They can be omitted.

The simulation time range can be provided in a structure opt cre-
ated with responseset. It is a vector of two elements, the start time
and the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

The optional arguments style and id have their usual meaning.
With output arguments, initial gives the output and the time as

column vectors. No display is produced.

Example
Response of a continuous-time system whose initial state is [5;3] (see
Fig. 5.17):

initial([-0.3,0.1;-0.8,-0.4],[2;3],[1,3;2,1],[2;1],[5;3])

524 Sysquake Remote ©1999-2016, Calerga Sàrl

0 20 40

0

10

initial

Figure 5.17 Example of initial

See also
dinitial, impulse, responseset, plotset

lsim

Time response plot of a continuous-time linear system with piece-wise
linear input.

Syntax
lsim(numc, denc, u, t)
lsim(numc, denc, u, t, opt)
lsim(Ac, Bc, Cc, Dc, u, t)
lsim(Ac, Bc, Cc, Dc, u, t, opt)
lsim(Ac, Bc, Cc, Dc, u, t, x0)
lsim(Ac, Bc, Cc, Dc, u, t, x0, opt)
lsim(..., style)
lsim(..., style, id)
(y, t) = lsim(...)

Description
lsim(numc,denc,u,t) plots the time response of the continuous-time
transfer function numd/dend. The input is piece-wise linear; it is de-
fined by points in real vectors t and u, which must have the same
length. Input before t(1) and after t(end) is 0. The input used for the
simulation is interpolated to have a smooth response.

LME Reference — dynamical system graphics 525

lsim(Ac,Bc,Cc,Dc,u,t) plots the time response of the
continuous-time state-space model (Ac,Bc,Cc,Dc) defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where the system input at time sample t(i) is u(i,:)’. For single-
input systems, u can also be a row vector.

lsim(Ac,Bc,Cc,Dc,u,t,x0) starts with initial state x0 at time t=0.
The length of x0 must match the number of states. The default initial
state is the zero vector.

Options can be provided in a structure opt created with
responseset:

’Range’ The range is a vector of two elements, the start time and
the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

’tOnly’ When opt.tOnly is true, lsim produces output only at
the time instants defined in t. The logical value false gives the
default interpolated values.

The optional arguments style and id have their usual meaning.
With output arguments, lsim gives the output and the time as col-

umn vectors (or an array for the output of a multiple-output state-
space model, where each row represents a sample). No display is
produced.

Example
Response of continuous-time system given by its transfer function with
an input defined by linear segments (see Fig. 5.18):

t = [0, 10, 20, 30, 50];
u = [1, 1, 0, 1, 1];
lsim(1, [1, 2, 3, 4], u, t, ’b’);

See also
step, impulse, initial, dlsim, plotset

ngrid

Nichols chart grid.

526 Sysquake Remote ©1999-2016, Calerga Sàrl

0 50

0

0.2

lsim

Figure 5.18 lsim(1, [1,2,3,4], u, t)

Syntax
ngrid
ngrid(style)

Description
ngrid plots a Nichols chart in the complex plane of the Nichols dia-
gram (see Fig. 5.19). The Nichols chart is a set of lines which corre-
spond to the same magnitude of the closed-loop frequency response.
The optional argument specifies the style.

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the lines corresponding to unit magnitude and to a phase equal to
−π(1 + 2k), with integer k, are displayed. The whole grid is made of
the lines corresponding to a closed-loop magnitude of -12, -6, -3, 0, 3,
6 and 12 dB.

Example
ngrid;
nichols(7, 1:3);

See also
hgrid, nichols, plotset, plotoption

nichols

Nichols diagram of a continuous-time system.

LME Reference — dynamical system graphics 527

-10 0
-20

0

20

40
scale(’lindb’,[-4*pi,0,0.01,100]); ngrid

Figure 5.19 Result of ngrid in dB when the whole grid is displayed.

Syntax
nichols(numc, denc)
nichols(numc, denc, w)
nichols(numc, denc, opt)
nichols(numc, denc, w, opt)
nichols(..., style)
nichols(..., style, id)
w = nichols(...)
(mag, phase) = nichols(...)
(mag, phase, w) = nichols(...)

Description
nichols(numc,denc) displays the Nichols diagram of the continuous-
time transfer function given by polynomials numc and denc. In con-
tinuous time, the Nichols diagram is the locus of the complex val-
ues of the transfer function evaluated at jω, where ω is real posi-
tive, displayed in the phase-magnitude plane. Usually, the magnitude
is displayed with a logarithmic or dB scale; use scale(’lindb’) or
scale(’linlog/lindb’) before nichols.

The range of frequencies is selected automatically or can be speci-
fied in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; fields Delay, NegFreq and Range are utilized. The op-
tional arguments style and id have their usual meaning.

With output arguments, nichols gives the phase and magnitude
of the frequency response and the frequency as column vectors. No
display is produced.

528 Sysquake Remote ©1999-2016, Calerga Sàrl

-4 -2 0

-60

-40

-20

scale(’lindb’); nichols(1,1:4)

Figure 5.20 scale(’lindb’); nichols(1,1:4)

In Sysquake, when the mouse is over a Nichols diagram, in addition
to the magnitude and phase which can be retrieved with _y0 and _x0,
the frequency is obtained in _q.

Examples
Nichols diagram of a third-order system (see Fig. 5.20):

scale(’lindb’);
ngrid;
nichols(20,poly([-1,-2+1j,-2-1j]));

Same plot with angles in degrees:

scale(’lindb’);
scalefactor([180/pi, 1]);
ngrid;
nichols(20,poly([-1,-2+1j,-2-1j]));

See also
dnichols, ngrid, nyquist, responseset, plotset, scalefactor

nyquist

Nyquist diagram of a continuous-time system.

LME Reference — dynamical system graphics 529

Syntax
nyquist(numc, denc)
nyquist(numc, denc, w)
nyquist(numc, denc, opt)
nyquist(numc, denc, w, opt)
nyquist(..., style)
nyquist(..., style, id)
w = nyquist(...)
(re, im) = nyquist(...)
(re, im, w) = nyquist(...)

Description
The Nyquist diagram of the continuous-time transfer function given by
polynomials numc and denc is displayed in the complex plane. In con-
tinuous time, the Nyquist diagram is the locus of the complex values
of the transfer function evaluated at jω, where ω is real positive (other
definitions include the real negative values, which gives a symmetric
diagram with respect to the real axis).

The range of frequencies is selected automatically or can be speci-
fied in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; fields Delay, NegFreq and Range are utilized. The op-
tional arguments style and id have their usual meaning.

With output arguments, nyquist gives the real and imaginary parts
of the frequency response and the frequency as column vectors. No
display is produced.

In Sysquake, when the mouse is over a Nyquist diagram, in addition
to the complex value which can be retrieved with _z0 or _x0 and _y0,
the frequency is obtained in _q.

Example
Nyquist diagram of a third-order system (see Fig. 5.21):

scale equal;
hgrid;
nyquist(20, poly([-1,-2+1j,-2-1j]))

See also
dnyquist, hgrid, nichols, responseset, plotset

plotroots

Roots plot.

530 Sysquake Remote ©1999-2016, Calerga Sàrl

0 0.2

-0.2

0
scale(’equal’); nyquist(1,1:3)

Figure 5.21 scale equal; nyquist(1,[1,2,3])

Syntax
plotroots(pol)
plotroots(pol, style)
plotroots(pol, style, id)

Description
plotroots(pol) displays the roots of the polynomial pol in the com-
plex plane. If this argument is a matrix, each line corresponds to a
different polynomial. The default style is crosses; it can be changed
with a second argument, or with named arguments.

Example
den = [1, 2, 3, 4];
num = [1, 2];
scale equal;
plotroots(den, ’x’);
plotroots(num, ’o’);

See also
rlocus, erlocus, sgrid, zgrid, plotset, movezero

responseset

Options for frequency responses.

LME Reference — dynamical system graphics 531

Syntax
options = responseset
options = responseset(name1, value1, ...)
options = responseset(options0, name1, value1, ...)

Description
responseset(name1,value1,...) creates the option argument used
by functions which display frequency and time responses, such as
nyquist and step. Options are specified with name/value pairs, where
the name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a de-
fault value. The result is a structure whose fields correspond to each
option. Without any input argument, responseset creates a structure
with all the default options. Note that functions such as nyquist and
step also interpret the lack of an option argument as a request to use
the default values. Contrary to other functions which accept options
in structures, such as ode45, empty array [] cannot be used (it would
be interpreted incorrectly as a numeric argument).

When its first input argument is a structure, responseset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
Delay 0 time delay
NegFreq false negative frequencies
Offset 0 offset
Range [] time or frequency range
tOnly false samples for specified time only (lsim)

Option Delay is used only by continuous-time frequency-response
and time-response functions; for frequency responses, it subtracts a
phase of delay*w, where w is the angular frequency. Option Offset
adds a a value to the step or impulse response.

Option NegFreq is used in Nyquist and Nichols diagrams,
continuous-time or discrete-time; when true, the response is
computed for negative frequencies instead of positive frequencies.
Option Range should take into account the sampling period for
discrete-time commands where it is specified.

Examples
Default options:

responseset
Delay: 0
NegFreq: false

Nyquist diagram of e−s/(s + 1):

532 Sysquake Remote ©1999-2016, Calerga Sàrl

nyquist(1, [1,1], responseset(’Delay’, 1));

Complete Nyquist diagram of 1/(s3+ 2s2+ 2s+ 1) with dashed line for
negative frequencies:

nyquist(2, [1,2,2,1]);
nyquist(2, [1,2,2,1], responseset(’NegFreq’,true), ’-’);

See also
bodemag, bodephase, dbodemag, dbodephase, dlsim, dnichols,
dnyquist, dsigma, impulse, lsim, nichols, nyquist, sigma, step

rlocus

Root locus.

Syntax
rlocus(num, den)
rlocus(num, den, style)
rlocus(num, den, style, id)
branches = rlocus(num, den)

Description
The root locus is the locus of the roots of the denominator of the
closed-loop transfer function (characteristic polynomial) of the sys-
tem whose open-loop transfer function is num/den when the gain is
between 0 and +∞ inclusive. The characteristic polynomial is num +
k · den, with k ≥ 0. rlocus requires a system with real coefficients,
causal or not. Note that the rlocus is defined the same way in the
domain of the Laplace transform, the z transform, and the delta trans-
form. The root locus is made of length(den)-1 branches which start
from each pole and end to each zero or to a real or complex point at
infinity. The locus is symmetric with respect to the real axis, because
the coefficients of the characteristic polynomial are real. By definition,
closed-loop poles for the current gain (i.e. the roots of num+den) are
on the root locus, and move on it when the gain change. rlocus plots
only the root locus, not the particular values of the roots for the cur-
rent gain, a null gain or an infinite gain. If necessary, these values
should be plotted with plotroots.

The part of the root locus which is calculated and drawn depends
on the scale. If no scale has been set before explicitly with scale or
implicitly with plotroots or plot, the default scale is set such that
the zeros of num and den are visible.

With an output argument, rlocus gives the list of root locus
branches, i.e. a list of row vectors which contain the roots. Different

LME Reference — dynamical system graphics 533

-4 -2 0
-2

0

2
rlocus

Figure 5.22 Example of rlocus

branches do not always have the same numbers of values, because
rlocus adapts the gain steps for each branch. Parts of the root locus
outside the visible area of the complex plane, as defined by the
current scale, have enough points to avoid any interference in
the visible area when they are displayed with plot. The gains
corresponding to roots are not available directly; they can be
computed as real(polyval(den,r)/polyval(num,r)) for root r.

As with other plots, the id is used for interactive manipulation.
Manipulating a root locus means changing the gain of the controller,
which keeps the locus at the same place but makes the closed-loop
poles move on it. Other changes are done by dragging the open-loop
poles and zeros, which are plotted by plotroots. To change the gain,
you must also plot the current closed-loop poles with the plotroots
function and use the same ID, so that the initial click identifies the
nearest closed-loop pole and the mouse drag makes Sysquake use
the root locus to calculate the change of gain, which can be retrieved
in _q (see the example below).

Examples
Root locus of (s2 + 3s+ 2)/(s3 + 2s2 + 3s+ 4) with open-loop poles and
zeros added with plotroots (see Fig. 5.22):

num = [1, 3, 2];
den = [1, 2, 3, 4];
scale(’equal’, [-4,1,-2,2]);
sgrid;
rlocus(num, den);

534 Sysquake Remote ©1999-2016, Calerga Sàrl

plotroots(num, ’o’);
plotroots(den, ’x’);

The second example shows how rlocus can be used interactively in
Sysquake.

figure "Root Locus"
draw myPlotRLocus(num, den);
mousedrag num = myDragRLocus(num, _q);

function
{@
function myPlotRLocus(num, den)
scale(’equal’, [-3, 1, -2, 2]);
rlocus(num, den, ’’, 1);
plotroots(addpol(num, den), ’̂ ’, 1);

function num = myDragRLocus(num, q)
if isempty(q)
cancel;

else
num = q * num;

end
@}

Caveat
The Laguerre algorithm is used for fast evaluation (roots and
plotroots are based on eig and have a better accuracy, but their
evaluation for a single polynomial is typically 10 times slower). The
price to pay is a suboptimal precision for multiple roots and/or
high-order polynomials.

See also
plotroots, plotset, erlocus, sgrid, zgrid

sgrid

Relative damping and natural frequency grid for the poles of a
continuous-time system.

Syntax
sgrid
sgrid(damping, freq)
sgrid(..., style)

LME Reference — dynamical system graphics 535

-2 0 2
-2

0

2
scale(’equal’, [-2,2,-2,2]); sgrid

Figure 5.23 Result of sgrid when the whole grid is displayed.

Description
With no numeric argument, sgrid plots a grid of lines with constant
relative damping and natural frequencies in the complex plane of s
(see Fig. 5.23).

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the imaginary axis (the stability limit for the poles of the Laplace trans-
form) is displayed.

With one or two numeric arguments, sgrid plots only the lines for
the specified values of damping and natural frequency. Let p and p be
the complex conjugate roots of the polynomial s2 + 2ωζs + ω2, where
ω is the natural frequency and ζ < 1 the damping. The locus of roots
with a constant damping ζ is generated by |mp| =

Æ

1 − ζ2Rep with
Rep < 0. The locus of roots with a constant natural frequency ω is a
circle of radius ω.

The style argument has its usual meaning.

Example
Typical use for poles or zeros displayed in the s plane:

scale equal;
sgrid;
plotroots(pol);

See also
zgrid, plotroots, hgrid, ngrid, plotset, plotoption

536 Sysquake Remote ©1999-2016, Calerga Sàrl

sigma

Singular value plot for a continuous-time state-space model.

Syntax
sigma(Ac, Bc, Cc, Dc)
sigma(Ac, Bc, Cc, Dc, w)
sigma(Ac, Bc, Cc, Dc, opt)
sigma(Ac, Bc, Cc, Dc, w, opt)
sigma(..., style)
sigma(..., style, id)
(sv, w) = sigma(...)

Description
sigma(Ac,Bc,Cc,Dc) plots the singular values of the frequency re-
sponse of the continuous-time state-space model (Ac,Bc,Cc,Dc) de-
fined as

jωX(jω) = AcX(jω) + BcU(jω)
Y(jω) = CcX(jω) + DcU(jω)

The range of frequencies is selected automatically or can be specified
in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

sigma is the equivalent of bodemag for multiple-input systems. For
single-input systems, it produces the same plot.

With output arguments, sigma gives the singular values and the
frequency as column vectors. No display is produced.

See also
bodemag, bodephase, dsigma, responseset, plotset

step

Step response plot of a continuous-time linear system.

Syntax
step(numc, denc)
step(numc, denc, opt)
step(Ac, Bc, Cc, Dc)
step(Ac, Bc, Cc, Dc, opt)
step(..., style)
step(..., style, id)
(y, t) = step(...)

LME Reference — dynamical system graphics 537

0 10
0

0.2

step(1,1:4)

Figure 5.24 step(1, [1,2,3,4])

Description
step(numc,denc) plots the step response of the continuous-time
transfer function numc/denc.

Further options can be provided in a structure opt created with
responseset; fields Delay and Range are utilized. The optional argu-
ments style and id have their usual meaning.

step(Ac,Bc,Cc,Dc) plots the step response of the continuous-time
state-space model (Ac,Bc,Cc,Dc) defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where u is a unit step. The state-space model must have a scalar
input, and may have a scalar or vector output.

With output arguments, step gives the output and the time as col-
umn vectors. No display is produced.

Example
Step response of the continuous-time system 1/(s3+2s2+3s+4) (see
Fig. 5.24):

step(1, 1:4, ’b’);

See also
impulse, lsim, dstep, hstep, responseset, plotset

538 Sysquake Remote ©1999-2016, Calerga Sàrl

-1 0 1

-1

0

1

scale(’equal’, [-1.2,1.2,-1.2,1.2]); zgrid

Figure 5.25 Result of zgrid when the whole grid is displayed.

zgrid

Relative damping and natural frequency grid for the poles of a
discrete-time system.

Syntax
zgrid
zgrid(damping, freq)
zgrid(..., style)

Description
With no numeric argument, zgrid plots a grid of lines with constant
relative damping and natural frequencies in the complex plane of z
(see Fig. 5.25).

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the unit circle (the stability limit for the poles of the z transform) is
displayed.

With one or two numeric arguments, zgrid plots only the lines for
the specified values of damping and natural frequency. The damping ζ
and the natural frequency ω are defined the same way as for the sgrid
function, with the mapping z = es (a normalized sampling frequency
is assumed). With a damping ζ, the line z and its complex conjugate

z are generated by z = e(−1+j
p
1−ζ2/ζ), with 0 ≤ ≤ mx and mx

chosen such that the line has a positive imaginary part. With a natural
frequency ω (typically in the range 0 for a null frequency to π for the

LME Reference — Sysquake Remote functions 539

Nyquist frequency), the line is generated by eωe
j

, where is such
that the curve is inside the unit circle.

The style argument has its usual meaning.

Example
Typical use for poles or zeros displayed in the z plane:

scale(’equal’,[-1.2,1.2,-1.2,1.2]);
zgrid;
plotroots(pol);

See also
sgrid, plotroots, hgrid, ngrid, plotset, plotoption

5.42 Sysquake Remote Functions

beginfigure

Beginning of the statements which define a figure.

Syntax
beginfigure
beginfigure(optname1, optvalue1, ...)

Description
beginfigure begins a sequence of statements which define
a single figure. The sequence ends with endfigure. Figures
which are produced with a single graphical command need not
beginfigure/endfigure, except to provide options.

beginfigure(optname1,optvalue1,...) also sets figure options.
The following options are supported.

size [width, height]
filetype ’gif’, ’png’, or ’jpeg’
quality number from 0 (worst) to 100 (best)
transparency true if the border is transparent
font ’sans-serif’, ’serif’, or ’monospace’
kind ’plain’, ’interactive’, or ’forminput’
stamp string displayed at the bottom right of the figure
name figure name
fd file descriptor the image is written to

Most options override the default values which can be specified in
Apache configuration file. Options ’kind’ and ’name’ are used for
figures which can be clicked by the user.

540 Sysquake Remote ©1999-2016, Calerga Sàrl

Figures are normally written as temporary files and the HTML code
required to display them as inline images is written to the HTML doc-
ument sent to the client. This is done automatically; all that has to
be done is executing graphical commands bracketed by beginfigure
and endfigure (or just the graphical commands for simplest cases).
It is also possible to store them manually into files; for instance, as a
first step to archive graphical results into a database. Option ’fd’ is
used for that purpose. Its value should be the file descriptor for binary
output obtained with fopen or similar functions. The file should be
closed afterwards. Specifying ’fd’ disables the output of HTML code
for an inline image.

Examples
Plain image:

beginfigure(’filetype’, ’gif’);
plot(rand(10));
endfigure;

A temporary gif file containing the plot is stored at the path specified
in the Apache configuration file, and Sysquake Remote produces HTML
code like the following:

<img src="/path/doc.sqr?__im=283.gif"
width="300" height="200" alt="" />

Interactive image:

beginfigure(’filetype’, ’gif’, ’kind’, ’interactive’);
plot(rand(10));
endfigure;

The same temporary image file is stored on the server, but Sysquake
Remote produces the following HTML code:

<form method="get" action="/path/doc.sqr">
<input type="hidden" name="_scflags" value="0">
<input type="hidden" name="_scx" value="13.8115">
<input type="hidden" name="_scy" value="-454.7028">
<input type="hidden" name="_scox" value="31.44">
<input type="hidden" name="_scoy" value="184.48">
<input type="image" name="_im" border="0"

src="/path/doc.sqr?__im=732.gif"
width="300" height="200" alt="" />

</form>

The hidden fields are what getclick expects to convert image coor-
dinates (with pixel units and top-left origin) to the coordinates implied
by the Sysquake Remote graphical commands. When the user clicks

LME Reference — Sysquake Remote functions 541

into the image, the same SQR file is reloaded and the position of the
click can be obtained with getclick. Typically, getclick is called at
the beginning of the SQR file; if it gives an empty structure, the initial
page is displayed; otherwise, the coordinates of the point clicked by
the user is used in an appropiate manner.

Form input image:

beginfigure(’filetype’, ’gif’, ’kind’, ’forminput’);
plot(rand(10));
endfigure;

Sysquake Remote produces the same HTML code as for interactive
images, but without the tags which begin and end the form. This
makes it suitable for images which are part of a more complex form,
for example when a different page is targetted by the action or when
the user can provide other kinds of input.

<input type="hidden" name="_scflags" value="0">
<input type="hidden" name="_scx" value="13.8115">
<input type="hidden" name="_scy" value="-454.7028">
<input type="hidden" name="_scox" value="31.44">
<input type="hidden" name="_scoy" value="184.48">
<input type="image" name="_im" border="0"

src="/path/doc.sqr?__im=978.gif"
width="300" height="200" alt="" />

See also
endfigure, getclick

endfigure

End of the statements which define a figure.

Syntax
endfigure

Description
endfigure ends a sequence of statements which define a single fig-
ure, which began with beginfigure.

See also
beginfigure

escapeshellarg

Change string so that it can be passed to the shell as an argument.

542 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
stre = escapeshellarg(str)

Description
escapeshellarg(str) changes string str so that it can be used as
a single argument in a shell command without being interpreted by
the shell. Single quote and backslash characters are escaped with
backslash characters, and the result is placed between single quotes.

escapeshellarg should be used when a string coming from an un-
trusted source is passed as an argument to a shell command.

Examples
escapeshellarg(’abc\’ \\x’);
’abc\’ \\x’

str = ’x; cat /etc/passwd’;
cmd = sprintf(’echo %s\n’, escapeshellarg(str))
echo ’x; cat /etc/passwd’

See also
escapeshellcmd

escapeshellcmd

Change string so that all characters with a special meaning for the
shell are escaped.

Syntax
stre = escapeshellcmd(str)

Description
escapeshellcmd(str) changes string str so that all characters which
have a special meaning to the shell (except for blanks) are escaped
with a backslash. The following characters are escaped:

’ " ˆ ‘ ; & \ > < * ? [] $

escapeshellcmd should be used when a string coming from an un-
trusted source is passed to a shell command as multiple arguments.

Examples
escapeshellcmd(’; echo ‘cat /etc/pwd‘’);
\; echo \‘cat /etc/pwd\‘

LME Reference — Sysquake Remote functions 543

See also
escapeshellarg

figurelist

List of figures.

Syntax
list = figurelist

Description
figurelist gives the list of all figures generated until now. Each ele-
ment of the list is a structure with the following fields:

title figure title set with title
path absolute path of the file

This function cannot be called from the sandbox.

See also
beginfigure, title

getclick

Mouse click in an image.

Syntax
s = getclick

Description
getclick gives a structure whose members give the location of a
mouse click on an image created with beginfigure/endfigure. The
location is translated from pixel coordinates to the coordinates used
to produce the figure. The following fields are defined:

x horizontal coordinate
y vertical coordinate
z coordinates as a complex number
xp pixel horizontal coordinate
yp pixel vertical coordinate
name figure name, or ’’ if none was defined

If the form elements which permit to get and translate the click
location are not found in the request, getclick gives an empty struc-
ture, which can be tested with isempty or isfield.

544 Sysquake Remote ©1999-2016, Calerga Sàrl

See also

http, httpvars

htmlspecialchars

Encode characters with a special meaning in HTML.

Syntax
stre = htmlspecialchars(str)

Description

htmlspecialchars(str) encodes the special characters in its string
argument str such that when the result is interpreted as HTML or XML,
it gives back str. The following characters are converted:

Character Encoding
& &
< <
> >
" "

htmlspecialchars should be used when arbitrary data must be
displayed as is in HTML code.

Example
cfrag = ’x = 1 << 15’;
fprintf(’<p>C fragment: <samp>%s</samp></p>’,

htmlspecialchars(cfrag));
<p>C fragment: <samp>x = 1 << 15</samp></p>

See also

urlencode

http

HTTP variable.

Syntax
str = http(name)

LME Reference — Sysquake Remote functions 545

Description
http(name) gets the value of the HTTP variable specified by string
name. Most names correspond to those defined by CGI scripts; their
case is not significant.

’AUTH_TYPE’ The authentication scheme.

’DOCUMENT_ROOT’ The absolute path of the root of document hier-
archy.

’POST_DATA’ The data which follow the MIME header in a POST
request. For a form submitted with POST, they contain the unde-
coded contents of the form.

’QUERY_STRING’ The part of the URL which follows the question
mark.

’REDIRECT_QUERY_STRING’ Original query string after a redirec-
tion.

’REDIRECT_URL’ Original URL after a redirection.

’REMOTE_ADDR’ The IP address of the client.

’REMOTE_HOST’ The hostname of the client.

’REMOTE_IDENT’ The user name used for authentication.

’REMOTE_PORT’ The port number of the client.

’REMOTE_USER’ The user name.

’REQUEST_METHOD’ Method used for the request, such as GET or
POST.

’REQUEST_URI’ URI of the request (the part of the URL after the
host name).

’SCRIPT_FILENAME’ The absolute path of the file being
interpreted.

’SERVER_ADDR’ The IP address of the server.

’SERVER_ADMIN’ The e-mail address of the webmaster.

’SERVER_NAME’ The hostname of the server.

’SERVER_PORT’ The port number of the server (typically 80).

’SERVER_PROTOCOL’ Protocol used by the server, such as
HTTP/1.1.

546 Sysquake Remote ©1999-2016, Calerga Sàrl

’SERVER_SIGNATURE’ A fragment of HTML code which can be used
to identify the server name, version, hostname and port.

’SERVER_SOFTWARE’ The name, version and operating system of
the server.

See also
httpvars, httpheader, getclick

httpheader

Get or set an HTTP header line.

Syntax
s = httpheader
value = httpheader(name)
httpheader(name, value)

Description
Without input argument, httpheader gives a structure whose fields
are the values of the HTTP header lines as strings. Field names are the
HTTP header names, without trailing colon.

httpheader(name) gets the value of an HTTP header line specified
by string name. The header name must not contain a trailing colon.
The result is a string.

httpheader(name,value), with two string input arguments, sets
or replaces the value of a header line. No output must be produced
before HTTP header lines are added or replaced, be it with HTML code
or with LME functions.

Examples
Typical result of httpheader without input argument:

Accept: ’*/*’
Accept-Language: ’en-us;q=0.60, en;q=0.40’
Connection: ’close’
Content-Length: ’27’
Content-Type: ’text/html’
Host: ’127.0.0.1’
Referer: ’http://127.0.0.1/test-httpheader.sqr’
User-Agent: ’Mozilla/5.0’

To add a custom header line, insert a code fragment before anything
else in the SQR file:

LME Reference — Sysquake Remote functions 547

<?sqr
httpheader(’Company’, ’Calerga Sarl’);
?>
<html>
...
</html>

The same approach should be followed to change a standard header
line, such as the content type:

<?sqr
httpheader(’Content-type’, ’image/png’);
imagewrite(1, rand(10), imageset(’Type’,’png’));
?>

See also
http

httpvars

Values submitted in a form.

Syntax
s = httpvars
s = httpvars(method)
s = httpvars(method, outputType)

Description
httpvars gives a structure whose members are the variables submit-
ted by the client in a GET or POST request. Names correspond to the
element names in the HTML form. Values are decoded as with function
urldecode.

httpvars(method) uses the contents of the query string if method
is ’GET’ or the posted data if method is ’POST’. If method is the empty
string, the method is selected automatically as if httpvars is called
without input argument.

An optional second input argument outputType specifies the type
of the output. It is either ’struct’ (default) to store values directly in
the fields of a structure, or ’structarray’ to store each form variable
in a separate element of a structure array, with fields name and value,
two strings. A structure array result is recommended when the length
of form variables can exceed the limits of LME field names (32 charac-
ters); with a structure results, the beginning of such names would be
truncated.

Since the client can submit anything and is not constrained by the
form structure, field existence (or absence) and value should be

548 Sysquake Remote ©1999-2016, Calerga Sàrl

checked carefully, for instance with function isfield or in a
try/catch block.

See also
http, getclick

sessionbegin

Begin a new session.

Syntax
sessionbegin

Description
sessionbegin begins a new session.

See also
sessionend

sessionend

End a new session.

Syntax
sessionend

Description
sessionend terminates the current session.

See also
sessionbegin

sessionfetchvar

Fetch the current session variable.

Syntax
v = sessionfetchvar

LME Reference — Sysquake Remote functions 549

Description
sessionfetchvar retrieves the session variable associated with the
current session which was saved in the session database on the server
with sessionstorevar. If there is no session variable for the current
session, sessionfetchvar returns the empty array [].

See also
sessionstorevar

sessionid

Session ID string.

Syntax
str = sessionid
str = sessionid(’name’)
str = sessionid(’id’)
str = sessionid(’form’)

Description
sessionid gives a string which defines an HTTP variable for the ses-
sion ID. The string has the format ’key=value’. The session ID string
can be passed to other pages in the same session, or used as a key in
a database to retrieve session-specific data.

With an input argument, sessionid gives the session ID in a
different format: sessionid(’name’) gives the name of the key
(’LMESESSIONID’), sessionid(’id’) gives only the session ID
without the key, and sessionid(’form’) gives a string which defines
a name and a value suitable for use in a form input element.

Example
Link to another page in the same session:

<a href="anotherPage?<?sqr= sessionid ?>">link

Different formats:

sessionid
LMESESSIONID=123456789012

sessionid(’name’)
LMESESSIONID

sessionid(’id’)
123456789012

sessionid(’form’)
name="LMESESSIONID" value="123456789012"

550 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
sessionbegin, httpvar

sessionlist

List of sessions in the session database.

Syntax
list = sessionlist

Description
sessionlist gives the list of all session ID stored in the database of
session ID.

See also
sessionresetall

sessionresetall

Discard all sessions in the session database.

Syntax
sessionresetall

Description
sessionresetall resets the database of sessions on the server, mak-
ing all session keys invalid.

See also
sessionlist

sessionstorevar

Fetch the current session variable.

Syntax
sessionstorevar(v)

LME Reference — Sysquake Remote functions 551

Description
sessionstorevar(v) stores v as the session variable associated with
the current session in the session database on the server. v can be any
kind of data, such as a structure. If it already exists, sessionstorevar
replaces it. It can be retrieved with sessionfetchvar.

See also
sessionfetchvar

urldecode

Decode the encoding of data in a query.

Syntax
str = urldecode(stre)

Description
urldecode(stre) decodes the special characters in its string, which
is typically a part of a GET or POST query. httpvars does it automati-
cally.

Examples
urldecode(’Hello%2C+World%21’)
Hello, World!

See also
urlencode

urlencode

Encode a string to a URL-friendly format.

Syntax
stre = urlencode(str)

Description
urlencode(str) encodes the special characters in its string argument
str such that it can be a part of a URL. Letters, digits and characters
.-_ (dot, minus and underscore) are preserved; spaces are replaced
with + (plus); and all other characters are encoded with a percent sign
and two lowercase hexadecimal digits. This encoding corresponds to
what Web browsers do to data submitted in forms.

552 Sysquake Remote ©1999-2016, Calerga Sàrl

Examples
urlencode(’Hello, World!’)
Hello%2c+World%21

name = ’Joe Jr.’;
fprintf(’click’, ...

urlencode(name));
click

See also
urldecode, htmlspecialchars

5.43 Dynamic Extension Loading

Extern functions compiled in dynamic libraries are usually loaded au-
tomatically when LME starts up. In some applications, for instance
when the creation of the library is made dynamically from LME, the
functions it implements should be made available on demand. The
functions described below support this.

exteval

Evaluate a function defined in an extern library loaded on demand.

Syntax
(argout1, ...) = exteval(id, funname, argin1, ...)

Description
exteval(id,funname,argin1,...) evaluates the function whose
name is given by string funname in a library loaded with extload and
identified by id. Remaining input arguments, if any, are given to the
function as input arguments. The function output arguments are
given back by exteval.

See also
extload, extunload

extload

Load an extern library.

Syntax
id = extload(path)

LME Reference — dynamic extension loading 553

Description
extload(path) loads an extern library whose path is given by string
path. It returns an identifier (a scalar integer) which must be used
with exteval to evaluate a function defined in the library and with
extunload to unload the library.

Libraries loaded with extload are fully compatible with libraries
which are loaded automatically at startup. They are described in the
chapter about Extern code.

See also
exteval, extunload

extunload

Unload an extern library.

Syntax
extunload(id)

Description
extunload(id) unloads a library loaded with extload and identified
by id. The ShutdownFn defined in the library, if any, is executed.

See also
extload, exteval

Chapter 6

Extensions

Extensions are additional functions, usually developed in C or Fortran,
which extend the core functionality of LME, the programming language
of Sysquake. Extensions are grouped in so-called shared libraries or
dynamically-linked libraries (DLL) files. At startup, Sysquake loads all
extensions it finds in the folder LMEExt in the same location as the
Sysquake program file. Each extension initializes itself and usually
displays a line of information in the Command window. No further
action is needed in order to use the new functions.

You can also develop and add your own extensions, as explained in
the next chapter.

Here is the list of the extensions currently provided with Sysquake.

Mathematics

Lapack (Windows, Mac, Unix) LAPACK-based linear algebra
functions.

Long integers (Windows, Mac, Unix) Arithmetic on arbitrary-
length integer numbers.

File input/output and data compression

Memory mapping (macOS, Unix) Mapping of files in memory,
which can be read and written like regular arrays.

Data compression (Windows, Mac, Unix) Support for com-
pressing and uncompressing data using ZLib.

Image Input/Output (Windows, Mac, Unix) Support for reading
and writing arrays as PNG or JPEG image files.

MAT-file (Windows, Mac, Unix) Support for reading and writing
MAT-files (native MATLAB binary files).

556 Sysquake Remote ©1999-2016, Calerga Sàrl

JSON (Windows, Mac, Unix) JSON encoding and decoding.

Databases

SQLite (Windows, macOS, Unix) SQLite, an embedded rela-
tional database in single files also using SQL as its query language.

Operating system

Socket (Windows, Mac, Unix) TCP/IP communication with
servers or clients on the same computer, on a local network or on
the Internet.

Launch URL (Windows, Mac, Unix) Opening of documents in a
World Wide Web browser.

Download URL (Windows, Mac, Linux) Download of documents
from the World Wide Web.

Open Script Architecture (Mac) Communication with other ap-
plications.

Power Management (Windows, Mac) Functions related to
power management.

System Log (macOS, Unix) Output to system log.

Shell (Windows, macOS, Unix) Shell related functions.

Signal (macOS, Unix) Support for signals (POSIX functions kill
and signal).

Web Services (Windows, macOS, Unix) Web Services (standard
remote procedure calls using XML-RPC and SOAP).

Windows Registry (Windows) Windows registry query.

Hardware support

Serial port (Windows, Mac, Unix) Communication with the se-
rial port.

I2C bus (Linux) Communication with devices on an I2C bus.

Joystick (Windows, macOS, Linux) Support for reading the state
of a joystick or other similar device.

Audio playback (Windows, macOS, Linux) Audio output.

Audio recording (Windows, macOS, Linux) Audio input.

Extensions — Lapack 557

Speech (Windows, Mac) Speech output.

Image Capture (macOS) Support for getting images from digital
cameras.

OpenCL (macOS) Support for executing code on GPU with
OpenCL.

6.1 Lapack

LAPACK is a freely available package which provides high-quality func-
tions for solving linear algebra problems such as linear equations,
least-square problems and eigenvalues. It relies on the BLAS (Basic
Linear Algebra Subprograms) for low-level operations. For more infor-
mation, please refer to the "LAPACK Users’ Guide", 3rd ed., Anderson,
E. et al., Society for Industrial and Applied Mathematics, Philadelphia
(USA), 1999, ISBN 0-89871-447-8. You can download the source code
of LAPACK from http://www.netlib.org.

LAPACK functions are not integrated in LME, but rather provided as
replacements and additions to the LME core functions. While it does
not change the way you use the functions, this approach offers more
flexibility for future improvements and permits to keep LME light for
applications where memory is limited. Currently, depending on the
platform, the LME functions based on LAPACK weight between 700
and 800 kilobytes, more than the core of LME itself; if new functions
are implemented, or if better versions become available, it will be
possible to replace the LAPACK extension without changing LME itself
or the whole application.

Currently, only a subset of LAPACK is available for LME. The func-
tions have been chosen from the set of double-precision subroutines
and usually apply to general real or complex matrices.

Functions

Operator *

Matrix multiplication.

Syntax
x * y
M1 * M2
M * x

558 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
x*y multiplies the operands together. Operands can be scalars (plain
arithmetic product), matrices (matrix product), or mixed scalar and
matrix.

Example
2 * 3
6

[1,2;3,4] * [3;5]
13
29

[3 4] * 2
6 8

BLAS subroutines
dgemm, zgemm

See also
operator /, operator \, operator * (LME)

Operator \
Matrix left division.

Syntax
a \ b
a \ B
A \ B

Description
a\b, where a is a scalar, divides the second operand by the first
operand. If the second operand is a matrix, each element is divided
by a.

In the case where the left operand A is a matrix, A\B solves the set
of linear equations A*x=B. If B is an m-by-n matrix, the n columns are
handled separately and the solution x has also n columns. The solution
x is inv(A)*B if A is square; otherwise, it is a least-square solution.

Example
[1,2;3,4] \ [2;6]
2
0

[1;2] \ [1.1;2.1]

Extensions — Lapack 559

1.06
[1,2] \ 1
0.2
0.4

LAPACK subroutines
dgesv, zgesv (square matrices); dgelss, zgelss (non-square matri-
ces)

See also
operator /, inv, pinv, operator \ (LME)

Operator /

Matrix right division.

Syntax
a / b
A / b
A / B

Description
a/b, where b is a scalar, divides the first operand by the second
operand. If the first operand is a matrix, each element is divided by b.

In the case where the right operand B is a matrix, A/B solves the
set of linear equations A=x*B. If A is an m-by-n matrix, the m rows are
handled separately and the solution x has also m rows. The solution x
is A*inv(B) if B is square; otherwise, it is a least-square solution.

Example
[2,6] / [1,3;2,4]
2 0

[1.1,2.1] / [1,2]
1.06

1 / [1;2]
0.2 0.4

LAPACK subroutines
dgesv, zgesv (square matrices); dgelss, zgelss (non-square matri-
ces)

See also
operator \, inv, pinv, operator / (LME)

560 Sysquake Remote ©1999-2016, Calerga Sàrl

balance

Diagonal similarity transform for balancing a matrix.

Syntax
B = balance(X)
(T, B) = balance(X)

Description
balance(X) applies a diagonal similarity transform to the square ma-
trix X to make the rows and columns as close in norm as possible.
Balancing may reduce the 1-norm of the matrix, and improves the
accuracy of the computed eigenvalues and/or eigenvectors.

balance returns the balanced matrix B which has the same eigen-
values and singular values as X, and optionally the scaling matrix T
such that T\X*T=B.

Example
A = [1,2e6;3e-6,4];
(T,B) = balance(A)
T =
1e6 0
0 1

B =
1 2
3 4

eig(A)-eig(B)
0
0

LAPACK subroutines
dgebal, zgebal

See also
balance (LME)

chol

Cholesky decomposition.

Syntax
C = chol(X)

Extensions — Lapack 561

Description
If a square matrix X is symmetric (or hermitian) and positive definite,
it can be decomposed into the following product:

X = C′C
where C is an upper triangular matrix.
The part of X below the main diagonal is not used, because X is

assumed to be symmetric or hermitian. An error occurs if X is not
positive definite.

Example
C = chol([5,3;3,8])
C =
2.2361 1.3416
0 2.4900

C’*C
5 3
3 8

LAPACK subroutines
dpotrf, zpotrf

See also
sqrtm, chol (LME)

det

Determinant.

Syntax
d = det(X)

Description
det(X) is the determinant of the square matrix M, which is 0 (up to
the rounding errors) if M is singular. The function rank is a numerically
more robust test for singularity.

Examples
det([1,2;3,4])
-2

det([1,2;1,2])
0

562 Sysquake Remote ©1999-2016, Calerga Sàrl

LAPACK subroutines
dgetrf, zgetrf

See also
det (LME)

eig

Eigenvalues and eigenvectors.

Syntax
e = eig(A)
(V,D) = eig(A)
e = eig(A,B)
(V,D) = eig(A,B)

Description
eig(A) returns the vector of eigenvalues of the square matrix A.

(V,D) = eig(A) returns a diagonal matrix D of eigenvalues and a
matrix V whose columns are the corresponding eigenvectors. They are
such that A*V = V*D.

eig(A,B) returns the generalized eigenvalues and eigenvectors of
square matrices A and B, such that A*V = B*V*D.

Example
A = [1,2;3,4]; B = [2,1;3,3];
eig(A)
5.3723
-0.3723

(V,D) = eig(A,B)
V =
-0.5486 -1
-1 0.8229

D =
1.2153 0
0 -0.5486

A*V,B*V*D
ans =
-2.5486 0.6458
-5.6458 0.2915

ans =
-2.5486 0.6458
-5.6458 0.2915

Extensions — Lapack 563

LAPACK subroutines
dgeev, zgeev for eigenvalues and eigenvectors; dgegv, zgegv for gen-
eralized eigenvalues and eigenvectors

See also
eig (LME)

hess

Hessenberg reduction.

Syntax
(P,H) = hess(A)
H = hess(A)

Description
hess(A) reduces the square matrix A A to the upper Hessenberg form
H using an orthogonal similarity transformation P’*H*P=A. The result
H is zero below the first subdiagonal and has the same eigenvalues as
A.

Example
(P,H)=hess([1,2,3;4,5,6;7,8,9])
P =
1 0 0
0 -0.4961 -0.8682
0 -0.8682 0.4961

H =
1 -3.597 -0.2481
-8.0623 14.0462 2.8308
0 0.8308 -4.6154e-2

LAPACK subroutines
dgehrd, zgehrd; dorghr, zunghr for computing P

See also
lu, schur

inv

Matrix inverse.

564 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
R = inv(X)

Description
inv(X) returns the inverse of the square matrix X. X must not be sin-
gular; otherwise, its elements are infinite.

To solve a set of linear of equations, the operator \ is more efficient.

Example
inv([1,2;3,4])
-2 1
1.5 -0.5

LAPACK subroutines
dgesv, zgesv

See also
operator /, operator \, lu, pinv, inv (LME)

logm

Matrix logarithm.

Syntax
L = logm(X)

Description
logm(A) returns the square matrix logarithm of A, the inverse of the
matrix exponential. The matrix logarithm does not always exist.

Example
L = logm([1,2;3,4])
L =
-0.3504+2.3911j 0.9294-1.0938j
1.394-1.6406j 1.0436+0.7505j

expm(L)
1-4.4409e-16j 2-6.1062e-16j
3-9.4369e-16j 4

LAPACK subroutines
zgees

Extensions — Lapack 565

See also
sqrtm, schur, expm (LME)

lu

LU factorization.

Syntax
(L,U,P) = lu(X)
(L2,U) = lu(X)
M = lu(X)

Description
(L,U,P)=lu(X) factorizes the square matrix X such that P*X=L*U,
where L is a lower-triangular square matrix, U is an upper-triangular
square matrix, and P is a permutation square matrix (a real matrix
where each line and each column has a single 1 element and zeros
elsewhere).

(L2,U)=lu(X) factorizes the square matrix X such that X=L2*U,
where L2=P\L.

M=lu(X) yields a square matrix M whose upper triangular part is U
and whose lower triangular part (below the main diagonal) is L without
the diagonal.

Example
X = [1,2,3;4,5,6;7,8,8];
(L,U,P) = lu(X)
L =
1 0 0
0.143 1 0
0.571 0.5 1
U =
7 8 8
0 0.857 1.857
0 0 0.5
P =
0 0 1
1 0 0
0 1 0
P*X-L*U
ans =
0 0 0
0 0 0
0 0 0

566 Sysquake Remote ©1999-2016, Calerga Sàrl

LAPACK subroutines
dgetrf, zgetrf

See also
inv, hess, schur

null

Null space.

Syntax
Z = null(A)

Description
null(A) returns a matrix Z whose columns are an orthonormal basis
for the null space of m-by-n matrix A. Z has n-rank(A) columns, which
are the last right singular values of A (that is, those corresponding to
the negligible singular values).

Without input argument, null gives the null value (the unique
value of the special null type, not related to linear algebra).

Example
null([1,2,3;1,2,4;1,2,5])
-0.8944
0.4472
8.0581e-17

LAPACK subroutines
dgesvd, zgesvd

See also
svd, orth, null (null value)

orth

Orthogonalization.

Syntax
Q = orth(A)

Extensions — Lapack 567

Description
orth(A) returns a matrix Q whose columns are an orthonormal basis
for the range of those of matrix A. Q has rank(A) columns, which are
the first left singular vectors of A (that is, those corresponding to the
largest singular values).

Example
orth([1,2,3;1,2,4;1,2,5])
-0.4609 0.788
-0.5704 8.9369e-2
-0.6798 -0.6092

LAPACK subroutines
dgesvd, zgesvd

See also
svd, null

pinv

Matrix pseudo-inverse.

Syntax
R = pinv(A)
R = pinv(A,tol)

Description
pinv(A) returns the pseudo-inverse of matrix A, i.e. a matrix B such
that B*A*B=B and A*B*A=A. For a full-rank square matrix A, pinv(A) is
the same as inv(A).

pinv is based on the singular value decomposition; all values be-
low the tolerance times the largest singular value are neglected. The
default tolerance is the maximum dimension times eps; another value
may be supplied to pinv as a second parameter.

Example
pinv([1,2;3,4])

-2 1
1.5 -0.5

B = pinv([1;2])
B =
0.2 0.4

[1;2] * B * [1;2]

568 Sysquake Remote ©1999-2016, Calerga Sàrl

1
2

B * [1;2] * B
0.2 0.4

LAPACK subroutines
dgelss, zgelss

See also
inv, svd

qr

QR decomposition.

Syntax
(Q, R, E) = qr(A)
(Q, R) = qr(A)
(Qe, Re, e) = qr(A, false)
(Qe, Re) = qr(A, false)

Description
With three output arguments, qr(A) computes the QR decomposition
of matrix A with column pivoting, i.e. a square unitary matrix Q and
an upper triangular matrix R such that A*E=Q*R. With two output argu-
ments, qr(A) computes the QR decomposition without pivoting, such
that A=Q*R. With a single output argument, qr gives R.

With a second input argument with the value false, if A has m rows
and n columns with m>n, qr produces an m-by-n Q and an n-by-n R.
Bottom rows of zeros of R, and the corresponding columns of Q, are
discarded. With column pivoting, the third output argument e is a
permutation vector: A(:,e)=Q*R.

Example
(Q,R) = qr([1,2;3,4;5,6])
Q =
-0.169 0.8971 0.4082
-0.5071 0.276 -0.8165
-0.8452 -0.345 0.4082

R =
-5.9161 -7.4374
0 0.8281
0 0

(Qe,Re) = qr([1,2;3,4;5,6],false)

Extensions — Lapack 569

Qe =
-0.169 0.8971
-0.5071 0.276
-0.8452 -0.345

Re =
-5.9161 -7.4374
0 0.8281

LAPACK subroutines
dgeqrf, zgeqrf for decomposition without pivoting; dgeqpf, zgeqpf
for decomposition with pivoting; dorgqr, zung2r for computing Q

See also
hess, schur

qz

Generalized Schur factorization.

Syntax
(S, T, Q, Z) = qz(A, B)

Description
qz(A,B) computes the generalized Schur factorization for square ma-
trices A and B, such that Q*S*Z=A and Q*B*Z=B. For real matrices, the
result is real with S block upper-diagonal with 1x1 and 2x2 blocks, and
T upper-diagonal. For complex matrices, the result is complex with
both S and T upper-diagonal.

Example
(S, T, Q, Z) = qz([1,2;3,4], [5,6;7,8])
S =
5.3043 0.5927

-1.2062 0.2423
T =

13.19 0
0 0.1516

Q =
-0.5921 -0.8059
-0.8059 0.5921

Z =
-0.6521 -0.7581
0.7581 -0.6521

Q*S*Z

570 Sysquake Remote ©1999-2016, Calerga Sàrl

1 2
3 4

Q*T*Z
5 6
7 8

LAPACK subroutines
dgges, zgges

See also
eig, schur

rank

Rank of a matrix.

Syntax
n = rank(X)
n = rank(X, tol)

Description
rank(X) returns the rank of matrix X, i.e. the number of lines or
columns linearly independent. To obtain it, the singular values are
computed and the number of values significantly larger than 0 is
counted. The value below which they are considered to be 0 can be
specified with the optional second argument.

Example
rank([1,1;0,0])
1

LAPACK subroutines
dgesvd, zgesvd

See also
svd, cond, orth, null, det, rank (LME)

rcond

Reciprocal condition number.

Extensions — Lapack 571

Syntax
r = rcond(A)

Description

rcond(A) computes the reciprocal condition number of matrix A, i.e. a
number r=1/(norm(A,1)*norm(inv(A),1)). The reciprocal condition
number is near 1 for well-conditioned matrices and near 0 for bad-
conditioned ones.

Example
rcond([1,1;0,1])
0.3

rcond([1,1e6;2,1e6])
5e-7

LAPACK subroutines

dlange, zlange for the 1-norm of X; dgecon, zgecon for the rcond of X
using its 1-norm

See also

lu, inv, cond (LME)

schur

Schur factorization.

Syntax
(U,T) = schur(A)
T = schur(A)

Description

schur(A) computes the Schur factorization of square matrix A, i.e. a
unitary matrix U and a square matrix T (the Schur matrix) such that
A=U*T*U’. If A is complex, the Schur matrix is upper triangular, and its
diagonal contains the eigenvalues of A; if A is real, the Schur matrix is
real upper triangular, except that there may be 2-by-2 blocks on the
main diagonal which correspond to the complex eigenvalues of A.

572 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
(U,T) = schur([1,2;3,4])
U =
0.416 -0.9094
0.9094 0.416

T =
5.3723 -1
0 -0.3723

eig([1,2;3,4])
5.3723
-0.3723

LAPACK subroutines
dgees, zgees

See also
lu, hess, qr, logm, sqrtm, eig

sqrtm

Matrix square root.

Syntax
S = sqrtm(X)

Description
sqrtm(A) returns the square root of the square matrix A, i.e. a matrix
S such that S*S=A.

Example
S = sqrtm([1,2;3,4])
S =
0.5537+0.4644j 0.807-0.2124j
1.2104-0.3186j 1.7641+0.1458j

S*S
1 2
3 4

LAPACK subroutines
zgees

See also
logm, schur, expm (LME)

Extensions — Lapack 573

svd

Singular value decomposition.

Syntax
s = svd(X)
(U,S,V) = svd(X)
(U,S,V) = svd(X,false)

Description
The singular value decomposition (U,S,V) = svd(X) decomposes the
m-by-n matrix X such that X = U*S*V’, where S is an m-by-n diagonal
matrix with decreasing positive diagonal elements (the singular values
of X), U is an m-by-m unitary matrix, and V is an n-by-n unitary matrix.
The number of non-zero diagonal elements of S (up to rounding errors)
gives the rank of X.

When m>n, (U,S,V) = svd(X,false) produces an n-by-n diagonal
matrix S and an m-by-n matrix U. The relationship X = U*S*V’ still
holds.

With one output argument, s = svd(X) returns the vector of sin-
gular values.

Example
(U,S,V)=svd([1,2,3;4,5,6])
U =
-0.3863 -0.9224
-0.9224 0.3863

S =
9.508 0 0
0 0.7729 0

V =
-0.4287 0.806 0.4082
-0.5663 0.1124 -0.8165
-0.7039 -0.5812 0.4082

U*S*V’
1 2 3
4 5 6

(U,S,V)=svd([1,2,3;4,5,6],false)
U =
-0.3863 -0.9224
-0.9224 0.3863

S =
9.508 0
0 0.7729

V =
-0.4287 0.806 -0.5663
0.1124 -0.7039 -0.5812

574 Sysquake Remote ©1999-2016, Calerga Sàrl

U*S*V
1.4944 -2.4586 2.4944
3.7929 -7.2784 4.7929

LAPACK subroutines

dgesvd, zgesvd

See also

rank, orth, null, pinv, svd (LME)

6.2 Long Integers

This section describes functions which support long integers (longint),
i.e. integer numbers with an arbitrary number of digits limited only
by the memory available. Some LME functions have been overloaded:
new definitions have been added and are used when at least one of
their arguments is of type longint. These functions are listed in the
table below.

LME Operator Purpose
abs absolute value
char conversion to string
disp display
double conversion to floating-point
gcd greatest common divisor
lcm least common multiple
minus - subtraction
mldivide \ left division
mpower ˆ power
mrdivide / right division
mtimes * multiplication
plus + addition
rem remainder
uminus - negation
uplus + no operation

Functions

longint

Creation of a long integer.

Extensions — data compression 575

Syntax
li = longint(i)
li = longint(str)

Description
longint(i) creates a long integer from a native LME floating-point
number. longint(str) creates a long integer from a string of decimal
digits.

Examples
longint(’1234567890’)
1234567890

longint(2)̂ 100
1267650600228229401496703205376

13th Mersenne prime:

longint(2)̂ 521-1
6864797660130609714981900799081393217269
4353001433054093944634591855431833976560
5212255964066145455497729631139148085803
7121987999716643812574028291115057151

Number of decimal digits in the 27th Mersenne prime:

length(char(longint(2)̂ 44497-1))
13395

6.3 Data Compression

This section describes functions which compress and uncompress se-
quences of bytes, such as text. Often, these sequences present redun-
dancy which can be removed to produce a shorter sequence, while still
being able to revert to the initial one.

The ZLib extension is based on zlib by J.L. Gailly and M. Adler, whose
work is gratefully acknowledged. To preserve their terminology, com-
pression is performed with function deflate, and uncompression with
inflate. Compressed data use the zlib or gzip format.

Functions

deflate

Compress a sequence of bytes (zlib format).

576 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
strc = deflate(str)

Description
deflate(str) produces a string strc which is usually shorter than it
argument str. String str can be reconstructed with inflate using
only strc. deflate and inflate process any sequence of bytes (8-bit
words); their input argument can be any array. However, their shape
and their type are lost (the result of deflate and inflate is always a
row vector of uint8 if the input is an integer array, or a string if the
input is a string) and their elements are restored modulo 256.

Depending on the data, compression rates of 2 or more are typi-
cal. Sequences without redundancy (such as random numbers or the
result of deflate) can produce a result slightly larger than the initial
sequence.

deflate uses the deflate algorithm and the zlib format.

Examples
str = repmat(’abcd ef ’, 1, 1000);
length(str)
8000

strc = deflate(str);
length(strc)
43

str = repmat(’abcd ef ’, 1, 1000);
strc = deflate(str);
str2 = inflate(strc);
str === str2
true

To compress objects which are not sequence of bytes, you can use
dumpvar and str2obj to convert them to and from a textual represen-
tation:

A = repmat(600, 2, 2)
A =
600 600
600 600

inflate(deflate(A))
1x4 uint8 array
88 88 88 88

str = dumpvar(A);
str2obj(deflate(inflate(str)))
600 600
600 600

See also
inflate, gzip, zwrite

Extensions — data compression 577

gzip

Compress a sequence of bytes (gzip format).

Syntax
strc = gzip(str)

Description
gzip(str) produces a string strc which is usually shorter than it ar-
gument str. String str can be reconstructed with inflate using only
strc. gzip and inflate process any sequence of bytes (8-bit words);
their input argument can be any array. However, their shape and their
type are lost (the result of gzip and inflate is always a row vector of
uint8 if the input is an integer array, or a string if the input is a string)
and their elements are restored modulo 256.

Depending on the data, compression rates of 2 or more are typical.
Sequences without redundancy (such as random numbers or the result
of gzip) can produce a result slightly larger than the initial sequence.

gzip uses the deflate algorithm and the gzip format.

Example
str = repmat(’abcd ef ’, 1, 1000);
length(str)
8000

strc = gzip(str);
length(strc)
55

str = repmat(’abcd ef ’, 1, 1000);
strc = gzip(str);
str2 = inflate(strc);
str === str2
true

See also
inflate, deflate, gzwrite

gzwrite

Compress a sequence of bytes and write the result with gzip format.

Syntax
nout = gzwrite(fd, data)

578 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
gzwrite(fd, data) compresses the array data, of type int8 or
uint8, and writes the result to the file descriptor fd with gzip format.

Note that you must write a whole segment of data with one call.
Deflation is restarted every time gzwrite is called.

See also
zread, gzip, zwrite

inflate

Uncompress the result of deflate or gzip.

Syntax
str = inflate(strc)

Description
inflate(strc) uncompresses strc to undo the effect of deflate or
gzip. If the input is a string, the output is a string whose characters
are coded on one byte; if the input is an integer array, the result is a
uint8 row vector.

See also
deflate, gzip, zread

zread

Read deflated or gzipped data and uncompress them.

Syntax
(data, nin) = zread(fd, n)
(data, nin) = zread(fd)

Description
zread(fd, n) reads up to n bytes from file descriptor fd, uncom-
presses them using the inflate algorithm, and returns the result as
a row vector of type uint8. An optional second output argument is set
to the number of bytes which have actually been read; it is less than
n if the end-of-file is reached.

With a single input argument, zread(fd) reads data until the end
of the file.

Note that you must read a whole segment of deflated data with one
call. Inflation is restarted every time zread is called. Compressed data
can have either the zlib or gzip format.

Extensions — image files 579

See also

zwrite, inflate

zwrite

Compress a sequence of bytes and write the result with zlib format.

Syntax
nout = zwrite(fd, data)

Description

zwrite(fd, data) compresses the array data, of type int8 or uint8,
and writes the result to the file descriptor fd with zlib format.

Note that you must write a whole segment of data with one call.
Deflation is restarted every time zwrite is called.

See also

zread, deflate, gzwrite

6.4 Image Files

This section describes functions which offer support for reading and
writing image files. Formats supported include PNG and JPEG.

Calerga gratefully acknowledges the following contributions: PNG
encoding and decoding are based on libpng; and JPEG encoding and
decoding are based on the work of the Independent JPEG Group.

Functions

imageread

Read an image file.

Syntax
A = imageread(fd)
A = imageread(fd, options)

580 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
imageread(fd) reads a PNG or JPEG file from file descriptor fd and
returns it as an array whose first dimension is the image height and
second dimension the image width. Grayscale images give a third
dimension equal to 1 (i.e. plain matrices). Color images give a third
dimension equal to 3; fist plane is the red component, second plane
the green component, and third plane the blue component. In both
cases, value range is 0 for black to 1 for maximum intensity.

The file descriptor is usually obtained by opening a file with fopen
in binary mode (text mode, with end-of-line translation, would produce
garbage or cause a decoding error).

A second argument can specify special options to modify the result.
Options are usually created with function imagereadset, or given di-
rectly as named arguments.

Example
fd = fopen(’image.png’, ’r’);
im = imageread(fd);
fclose(fd);

See also
imagereadset, imagewrite

imagereadset

Options for image input.

Syntax
options = imagereadset
options = imagereadset(name1=value1, ...)
options = imagereadset(name1, value1, ...)
options = imagereadset(options0, name1=value1, ...)
options = imagereadset(options0, name1, value1, ...)

Description
imagereadset(name1,value1,...) creates the option argument
used by imageread. Options are specified with name/value pairs,
where the name is a string which must match exactly the names
in the table below. Case is significant. Options which are not
specified have a default value. The result is a structure whose
fields correspond to each option. Without any input argument,
imagereadset creates a structure with all the default options. Note
that imageread also interpret the lack of an option argument, or the
empty array [], as a request to use the default values.

Extensions — image files 581

When its first input argument is a structure, imagereadset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options. Currently they are used only
when reading PNG files.

Name Default Meaning
Scale16 false convert 16-bit images to uint8
StripAlpha true ignore the alpha channel

Named arguments can be given directly to imageread without call-
ing explicitly imageset.

Examples
Default options:

imagereadset
Scale16: false
StripAlpha: true

Reading a PNG file with alpha channel (an RGB+alpha image is an
array of size [height, width, 4]):

fd = fopen(’image.png’);
im = imageread(fd, StripAlpha=false);
fclose(fd);

See also
imageread

imageset

Options for image output.

Syntax
options = imageset
options = imageset(name1=value1, ...)
options = imageset(name1, value1, ...)
options = imageset(options0, name1=value1, ...)
options = imageset(options0, name1, value1, ...)

Description
imageset(name1,value1,...) creates the option argument used by
imagewrite. Options are specified with name/value pairs, where the
name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to each

582 Sysquake Remote ©1999-2016, Calerga Sàrl

option. Without any input argument, imageset creates a structure
with all the default options. Note that imagewrite also interpret the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, imageset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options:

Name Default Meaning
Type ’PNG’ ’PNG’ or ’JPG’/’JPEG’
Quality 80 JPEG quality (0=worst,100=best)
Progressive false true to permit progressive decoding

Named arguments can be given directly to imagewrite without
calling explicitly imageset.

Examples

Default options:

imageset
Type: ’png’
Quality: 80
Progressive: false

Writing the contents of array A into a small, low-quality JPEG file:

fd = fopen(’A.jpg’, ’w’);
imagewrite(fd, A, Type=’JPG’, Quality=20);
fclose(fd);

See also

imagewrite

imagewrite

Write an image file.

Syntax
imagewrite(fd, A)
imagewrite(fd, A, options)

Extensions — SQLite 583

Description
imagewrite(fd,A) writes array A to a PNG file specified by file de-
scriptor fd. Image A is an array whose first dimension is the image
height and second dimension the image width. Grayscale images have
their third dimension equal to 1 (i.e. they are plain matrices). Color
images have a third dimension equal to 3; fist plane is the red com-
ponent, second plane the green component, and third plane the blue
component. In both cases, value range is 0 for black to 1 for maximum
intensity. Values outside this range are clipped.

imagewrite(fd,A,options) uses structure options to specify im-
age file options. Options are usually created with function imageset,
or given directly as named arguments; they include the file type.

The file descriptor is usually obtained by opening a file with fopen
in binary mode (text mode, with end-of-line translation, would produce
a corrupted image file).

Example
Write the image contained in the matrix im to a file "image.png", using
the default options.

fd = fopen(’image.png’, ’w’);
imagewrite(fd, im);
fclose(fd);

Write the same image as a JPEG file.

fd = fopen(’image.jpg’, ’w’);
imagewrite(fd, im, Type=’JPEG’);
fclose(fd);

See also
imageset, imageread

6.5 SQLite

This section describes functions which SQLite relational databases.
SQLite is a public-domain relational database stored locally in a single
file, which uses SQL as its query language. There are two main ad-
vantages of SQLite with respect to larger relational database systems:
there is no need to install any additional software or to have access
to a remote database, and the database file can be archived and re-
stored extremely easily. On the other hand, it lacks concurrent access,
stored procedures, etc. Its SQL compatibility permits the developer to
port easily applications to other databases, should it be necessary.

584 Sysquake Remote ©1999-2016, Calerga Sàrl

This documentation assumes you have a basic knowledge of SQL.
Even if you do not, the examples should help you to get started.
For more informations about SQLite, please visit the Web site
http://www.sqlite.org.

The creator of SQLite, D. Richard Hipp, is gratefully acknowledged.
The following functions are defined.

Function Purpose
sqlite_changes Number of affected rows in the last command
sqlite_close Close an SQLite database
sqlite_exec Execute an SQL query
sqlite_last_insert_rowid Index of tha last row inserted
sqlite_open Open an SQLite database
sqlite_set Options for sqlite_open
sqlite_shell Simple SQLite shell
sqlite_tables Get the table names
sqlite_version Get the version of SQLite

6.6 Compiling the extension

The extension is installed with Sysquake or LME and ready to use; but
it is also provided as source code. If you want, you can check on
the Web if there is a more recent version of SQLite and compile the
extension again with it. The steps below show the simplest way to do
it.

Check your development tools Make sure you have the devel-
opment tools required for compiling the extension. Typically, you
need a C compiler chain like gcc. You can get it as free software
from GNU.

Get SQLite distribution Download the latest distribution from the
site http://www.sqlite.org.

Locate the required files To compile the extension, you will need
the following files:

– LMESQLite.c, the main source code of the extension which
defines new functions for LME.

– LME_Ext.h, the header file for LME extensions, which is pro-
vided with all LME applications which support extensions; it is
typically stored in a directory named ExtDevel. Let extdevel
be its path.

– The source code of SQLite, typically in the directory src of the
SQLite distribution.

Extensions — SQLite 585

Compile the extension Create a new directory, cd to it, and run
the Make file of the SQLite extension. For example:

$ cd
$ mkdir mysql-build
$ cd mysql_buid
$ ext= extpath sqlite= sqlitepath

make -f extpath/Makefile.lme-sqlite

Install the extension For most LME applications, just move or
copy the extension (sqlite.so if you have used the command
above) to the directory where LME looks for extensions (usually
LMEExt). For Sysquake Remote, you also have to add the follow-
ing line to the configuration file of Apache (please read Sysquake
Remote documentation for more information):

SQRLoadExtension extpath/sqlite.so

where extpath/sqlite.so is the absolute path of the extension.

Start or restart the LME application To check that LME has
loaded the extension successfully, check the information line start-
ing with SQLite. You can also try to evaluate sqlite_version,
which should display the version of SQLite.

Functions

sqlite_changes

Number of affected rows in the last command.

Syntax
n = sqlite_changes(c)

Description
sqlite_changes(c) gives the number of affected rows in the last
UPDATE, DELETE, or INSERT command.

SQLite call
sqlite3_changes

See also
sqlite_exec, sqlite_last_insert_rowid

586 Sysquake Remote ©1999-2016, Calerga Sàrl

sqlite_close

Close an SQLite database.

Syntax
sqlite_close(c)

Description
sqlite_close(c) closes the MYSQLite database identified by c.

SQLite call
sqlite3_close

See also
sqlite_open

sqlite_exec

Execute an SQL query against an SQLite database.

Syntax
sqlite_exec(c, query, ...)
table = sqlite_exec(c, query, ...)

Description
sqlite_exec(c,query) executes a query given in SQL in a string,
against the SQLite database identified by c. The number of modified
rows can be obtained with sqlite_changes.

Additional input arguments are bound to placeholders (question
mark character) in the query. With respect to building a query with
string concatenation or sprintf, this has the advantage of prevent-
ing any syntax error for characters which have a special meaning in
SQLite (with the security risk of code injection) and type conversion.
Supported types include strings, arrays of uint8 (stored as blobs), and
scalar floating-point and integer numbers (complex part is ignored).

With an output argument, sqlite_exec returns the resulting table
as a list of rows. Each row is given as a list of column values or as a
structure, as specified in the option argument of sqlite_open created
with sqlite_set.

Extensions — SQLite 587

SQLite calls
sqlite3_prepare16_v2, sqlite3_bind_text16,
sqlite3_bind_blob, sqlite3_bind_null, sqlite3_bind_int,
sqlite3_bind_int64, sqlite3_bind_double, sqlite3_finalize,
sqlite3_column_count, sqlite3_step, sqlite3_column_type,
sqlite3_column_int, sqlite3_column_double,
sqlite3_column_text16, sqlite3_column_blob,
sqlite3_column_bytes, sqlite3_column_name

Examples
name = ’Joe’;
age = 8;
sqlite_exec(c, ’insert into persons (name, age) values (?,?);’, name, age);
r = sqlite_exec(c, ’select age from persons where name = ?;’, name);

See also
sqlite_open, sqlite_set, sqlite_changes

sqlite_last_insert_rowid

Row ID of the last row inserted in a SQLite database.

Syntax
n = sqlite_last_insert_rowid(c)

Description
sqlite_last_insert_rowid(c) gives the last row inserted by the
INSERT command with sqlite_exec.

SQLite call
sqlite3_last_insert_rowid

See also
sqlite_exec, sqlite_changes

sqlite_open

Open an SQLite database.

Syntax
c = sqlite_open(filename)
c = sqlite_open(filename, options)

588 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
sqlite_open(filename) opens the database in the specified file. If
the file does not exist, a new database is created. The result is an
identifier which should be used in all other SQLite calls. The database
is closed with sqlite_close.

sqlite_open(filename,options) specifies options in the second
input argument, which is usually the result of sqlite_set.

Example
c = sqlite_open(’test.sqlite’)
c =
0

rows = sqlite_exec(c, ’select * from person’);
sqlite_close(c);

SQLite calls
sqlite_open, sqlite3_progress_handler

See also
sqlite_close, sqlite_set

sqlite_set

Options for SQLite.

Syntax
options = sqlite_set
options = sqlite_set(name1, value1, ...)
options = sqlite_set(options0, name1, value1, ...)

Description
sqlite_set(name1,value1,...) creates the option argument used
by sqlite_open. Options are specified with name/value pairs, where
the name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to each
option. Without any input argument, sqlite_set creates a structure
with all the default options. Note that sqlite_open also interprets the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, sqlite_set adds or
changes fields which correspond to the name/value pairs which follow.

Extensions — SQLite 589

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
ExecResultClass ’list’ row type (’list’ or ’struct’)
ExecResultNumeric true conversion of numeric columns to double

SQLite is usually typeless. If ExecResultNumeric is true, columns
are converted to numbers of class double unless they contain a non-
numeric value, or the type name used during declaration contains
BLOB, CHAR, CLOB, or TEXT. This is the same convention as what SQLite
uses itself, for example when sorting rows. NULL values are always
represented as the (double) empty array [].

Examples
Default options:

sqlite_set
ExecResultClass: ’list’
ExecResultNumeric: true

See also
sqlite_open

sqlite_shell

Simple SQLite shell.

Syntax
sqlite_shell(c)

Description
sqlite_shell(c) starts a simple shell where SQL statements can be
typed and executed. Each line corresponds to a separate statement;
the trailing semicolon can be omitted. In addition to SQL statements,
quit exits the read-execute-print loop and returns to LME.

SQLite call
sqlite3_exec

See also
sqlite_open, sqlite_exec

590 Sysquake Remote ©1999-2016, Calerga Sàrl

sqlite_tables

Get the names of tables in an SQLite database.

Syntax
tables = sqlite_tables(c)

Description
sqlite_tables(c) gives a list of table names defined in the SQLite
database identified by c. The names are sorted.

SQLite call
sqlite3_exec

See also
sqlite_open, sqlite_exec

sqlite_version

Get the version of SQLite.

Syntax
str = sqlite_version

Description
sqlite_version gives the version of SQLite compiled in the exten-
sion, as a string. No database is required.

SQLite call
sqlite3_version

6.7 Sockets

Socket functions enable communication with a server over TCP/IP. Ser-
vices which can be accessed via TCP/IP include HTTP (most common
protocol for WWW documents and Web services), SMTP (for sending e-
mail), POP (for receiving mail), and telnet. Both TCP (where the client
and the server are connected and communicate with streams of bytes
in both directions) and UDP (connectionless exchange of packets with-
out guarantee of transfer and order) are supported.

Extensions — sockets 591

Functions described in this section include only those required for
opening and configuring the connection. They correspond to fopen for
files. Input and output are done with the following generic functions:

Function Description
fclose close the file
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
fscanf read formatted data
fwrite write data
redirect redirect output

fread does not block if there is not enough data; it returns imme-
diately whatever is available in the input buffer.

Functions

gethostbyname

Resolve host name.

Syntax
ip = gethostbyname(host)

Description
gethostbyname(host) gives the IP address of host in dot notation as
a string.

Example
gethostbyname(’localhost’)
127.0.0.1

See also
gethostname

gethostname

Get name of current host.

Syntax
str = gethostname

592 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
gethostname gives the name of the current host as a string.

See also
gethostbyname

socketaccept

Accept a connection request.

Syntax
fd = socketaccept(fds)

Description
socketaccept(fds) accepts a new connection requested by a client
to the server queue created with socketservernew. Its argument fds
is the file descriptor returned by socketservernew.

Once a connection has been opened, the file descriptor fd can be
used with functions such as fread, fwrite, fscanf, and fprintf. The
connection is closed with fclose.

See also
fclose, socketconnect, socketservernew, fread, fwrite, fscanf,
fgetl, fgets, fprintf

socketconnect

Change UDP connection.

Syntax
socketconnect(fd, hostname, port)

Description
socketconnect(fd,hostname,port) changes the remote host and
port of the UDP connection specified by fd. An attempt to use
socketconnect on a TCP connection throws an error.

See also
socketnew

Extensions — sockets 593

socketnew

Create a new connection to a server.

Syntax
fd = socketnew(hostname, port, options)
fd = socketnew(hostname, port)

Description

socketnew(hostname,port) creates a new TCP connection to the
specified hostname and port and returns a file descriptor fd.

The third argument of socketnew(hostname,port,options) is a
structure which contains configuration settings. It is set with
socketset.

Once a connection has been opened, the file descriptor fd can be
used with functions such as fread, fwrite, fscanf, and fprintf. The
connection is closed with fclose.

Example
fd = socketnew(’www.somewebserver.com’, 80, ...

socketset(’TextMode’,true));
fprintf(fd, ’GET %s HTTP/1.0\n\n’, ’/’);
reply = fgets(fd)
reply =
HTTP/1.1 200 OK

fclose(fd);

See also

fclose, socketset, socketconnect, socketservernew, fread,
fwrite, fscanf, fgetl, fgets, fprintf

socketservernew

Create a new server queue for accepting connections from clients.

Syntax
fds = socketservernew(port, options)
fds = socketservernew(port)

594 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
socketservernew(hostname,port) creates a new TCP or UDP socket
for accepting incoming connections. Connections from clients are ac-
cepted with socketaccept, which must provide as input argument the
file descriptor returned by socketservernew. Using multiple threads,
multiple connections can be accepted on the same port, using multiple
socketaccept for one socketservernew.

The second argument of socketservernew(port,options) is a
structure which contains configuration settings. It is set with
socketset. Options are inherited by the connections established with
socketaccept. On platforms where administrator authorizations are
enforced, only an administrator account (root account) can listen to a
port below 1024. Only one server can listen to the same port.

To stop listening to new connections, the socket is closed with
fclose. The file descriptor returned by socketservernew can be
used only with socketaccept and fclose.

Example
fds = socketservernew(8080);
fd = socketaccept(fds);
request = fscanf(fd, ’GET %s’);
fprintf(fd, ’Your request is "%s"\n’, request);
fclose(fd);
fclose(fds);

See also
fclose, socketset, socketaccept, socketnew

socketset

Configuration settings for sockets.

Syntax
options = socketset
options = socketset(name1, value1, ...)
options = socketset(options0, name1, value1, ...)

Description
socketset(name1,value1,...) creates the option argument used
by socketnew and socketservernew. Options are specified with
name/value pairs, where the name is a string which must match
exactly the names in the table below. Case is significant. Options
which are not specified have a default value. The result is a structure
whose fields correspond to each option. Without any input argument,

Extensions — sockets 595

socketset creates a structure with all the default settings. Note that
socketnew also interprets the lack of an option argument, or the
empty array [], as a request to use the default values.

When its first input argument is a structure, socketset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
ListenQueue 5 queue size for incoming connections
Proto ’tcp’ protocol (’tcp’ or ’udp’)
TextMode true text mode
Timeout 30 timeout in seconds

When TextMode is true, input CR and CR-LF sequences are con-
verted to LF, and output LF is converted to CR-LF, to follow the re-
quirements of many Internet protocols where lines are separated with
CR-LF. Note that TextMode is true by default.

Example
socketset
ListenQueue: 5
Proto: ’tcp’
TextMode: true
Timeout: 30

See also
socketnew, socketservernew, socketsetopt

socketsetopt

Settings change for sockets.

Syntax
socketsetopt(fd, name1, value1, ...)
socketsetopt(fd, options)

Description
socketsetopt(fd,name1,value1,...) changes the options for the
socket identified by fd. Options are specified by pairs of name and
value. They are the same as those valid with socketset. However,
only ’TextMode’ and ’Timeout’ have an effect; other ones are ig-
nored.

socketsetopt(fd,options) takes as second argument a structure
of options created with socketset.

596 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
socketset, socketnew, socketservernew

6.8 System Log

System log function enables to log messages to the system-wide log-
ging facility. It is supported on unix systems, such as macOS and
Linux.

Function

syslog

File descriptor of syslog.

Syntax
fd = syslog
fd = syslog(priority)

Description
syslog gives the file descriptor corresponding to syslog. It can be used
with output functions like fprintf. Each output command causes a
message to be logged with priority ’info’. No linefeed should be out-
put. Empty messages and messages containing only line feeds and
carriage returns are not logged. Note that every low-level output func-
tion produces a separate log entry; high-level functions like dumpvar,
for instance, can produce a larger number of lines than expected.

syslog(priority) gives the file descriptor corresponding to mes-
sages to syslog with the specified priority. The input argument is one
of the following strings: ’emerg’, ’alert’, ’crit’, ’err’, ’warning’,
’notice’, ’info’, or ’debug’; case is ignored.

Examples
Simple information message:

fprintf(syslog, ’pi = %g’, pi);

Debugging message:

fprintf(syslog(’debug’), ’nargin = %d’, nargin);

Redirection of standard error (all error messages and warnings are
copied to syslog):

Extensions — launch URL 597

redirect(2, syslog, true);

To get the log, please see the man page of syslog or syslogd. On
macOS, you can use the Console application.

See also
fprintf, redirect

6.9 Launch URL

This section describes a function which requests the default WWW
browser to open a URL.

The intended use of launchurl is the display of local or Web-based
documentation. You can add menu entries to your SQ files to help your
users, point to updates, or send e-mail.

Functions

launchurl

Launch a URL in the default browser.

Syntax
status = launchurl(url)

Description
launchurl asks the current browser to launch a URL given as a string.
Exactly what "launching a URL" means depends on the URL protocol,
i.e. the part before the colon, and on the program which processes it.
If the URL cannot be processed, the status is set to false; otherwise,
it is true, which does not mean that a connection has been correctly
established on the World Wide Web.

The current implementation uses the method openURL: of the App-
Kit framework on the Macintosh and ShellExecute on Windows. On
Windows, the URL must begin with http:, ftp:, gopher:, nntp:, news:,
mailto:, or file:. On Linux, the first application in the following list which
is found in the current path is executed: $X11BROWSER, $BROWSER
(environment variables), htmlview, firefox, mozilla, netscape, opera,
konqueror; launchurl always returns true.

Example
if l̃aunchurl(’https://calerga.com’)
dialog(’Cannot launch https://calerga.com’);

end

598 Sysquake Remote ©1999-2016, Calerga Sàrl

6.10 Download URL

This section describes a function which downloads data from the
WWW.

Functions

urldownload

Get the contents of a URL.

Syntax
contents = urldownload(url)

Description
urldownload(url) downloads data referenced by a URL. The result is
typically an HTML document, or a data file such as an image. Both
input and output arguments are strings.

urldownload(url,query) submits a query with the GET method
and downloads the result. The URL should use the HTTP or HTTPS
protocol.

urldownload(url,query,method) query with the specified
method (’get’ or ’post’) and downloads the result.

Example
data = urldownload(’http://www.w3.org’);

6.11 Web Services

This section describes functions which implement the client side of the
XML-RPC and SOAP protocols, as well as low-level functions which can
also be used to implement the server side. XML-RPC and SOAP per-
mit web services, i.e. calling a function on a remote server over the
World Wide Web. XML-RPC is based on two standards: XML (eXtended
Mark-up Language), used to encode the request to the server and its
response to the client, and HTTP (HyperText Transfer Protocol), the
main communication protocol used by the World Wide Web. In XML-
RPC, RPC means Remote Procedure Call; it is a mechanism used for
decades to communicate between a client and a server on a network.
The advantages of XML-RPC are that it is based on the same technolo-
gies as the Web and it is very simple. Its drawbacks are that it is less
efficient than a binary encoding, and it is sometimes too simple and

Extensions — Web Services 599

requires encoding of binary data, which defeats its main advantage.
For instance strings are encoded in ASCII, and supported types are
much less rich than LME’s.

SOAP is also a standard used for exchanging data encoded with
XML. It is more complicated than XML-RPC and supports more types.
Function parameters are referenced by name while XML-RPC uses an
ordered list. SOAP requests can be sent with different communica-
tion protocols; the implementation described here uses only the most
common one, HTTP.

XML-RPC

In LME, XML-RPC makes calls to remote procedure similar to the use of
feval. The two main functions are xmlrpccall and xmlrpccallset.
Lower-level functions which encode and decode calls and responses,
while not necessary for standard calls, can be used to understand ex-
actly how data are converted, to implement the server, or for special
applications.

Procedure calls can contain parameters (arguments) and always
return a single response. These data have different types. XML-RPC
converts them automatically, as follows.

XML-RPC LME
i4 int32 scalar
int int32 scalar
boolean logical scalar
string character 1-by-n array
double real double scalar
dateTime.iso8601 1-by-6 double array
base64 1-by-n uint8 array
struct structure
array list

There is no difference between i4 and int. In strings, only the least-
significant byte is transmitted (i.e. only ASCII characters between 0
and 127 are transmitted correctly). Double values do not support an
exponent (a sufficient number of zeros are used instead). The XML-
RPC standard does not support inf and NaN; XML-RPC functions do,
which should not do any harm. In LME, date and time are stored in
a row vector which contains the year, month, day, hour, minute, and
second (like the result of the function clock), without time zone infor-
mation.

SOAP

SOAP calls are very similar to XML-RPC. The main difference is that
they use a single structure to represent the parameters. The mem-

600 Sysquake Remote ©1999-2016, Calerga Sàrl

ber fields are used as parameter names. The table below shows the
mapping between SOAP types and LME types.

SOAP LME
xsd:int int32 scalar
xsd:boolean logical scalar
xsd:string character 1-by-n array
xsd:double real double scalar
xsd:timeInstant 1-by-6, 1-by-7, or 1-by-8 double array
SOAP-ENC:base64 1-by-n uint8 array
(structure) structure
SOAP-ENC:array list

In LME, time instants are stored as a row vector of 6, 7, or 8 el-
ements which contains the year, month, day, hour, minute, second,
time zone hour, and time zone minute; the time zone is optional. Ar-
rays which are declared with a single type xsd:int, xsd:boolean, or
xsd:double are mapped to LME row vectors of the corresponding class.

The two main functions for performing a SOAP call are soapcall
and soapcallset.

Functions

soapcall

Perform a SOAP remote procedure call.

Syntax
response = soapcall(url, method, ns, action, opt)
response = soapcall(url, method, ns, action, opt, param)

Description
soapcall(url,method,ns,action,opt,param) calls a remote proce-
dure using the SOAP protocol. url (a string) is either the complete
URL beginning with http://, or only the absolute path; in the second
case, the server address and port come from argument opt. method is
the SOAP method name as a string; ns is its XML name space; action
is the SOAP action. opt is a structure which contains the options; it
is typically created with soapcallset, or can be the empty array []
for the default options. param, if present, is a structure which contains
the parameters of the SOAP call.

Example
The following call requests a translation from english to french (it as-
sumes that the computer is connected to the Internet and that the
service is available).

Extensions — Web Services 601

url = ’http://services.xmethods.net/perl/soaplite.cgi’;
method = ’BabelFish’;
ns = ’urn:xmethodsBabelFish’;
action = ’urn:xmethodsBabelFish#BabelFish’;
param = struct;
param.translationmode = ’en_fr’;
param.sourcedata = ’Hello, Sysquake!’;
fr = soapcall(url, method, ns, action, [], param)
fr =
Bonjour, Sysquake!

Note that since the server address is given in the URL, the default op-
tions are sufficient. The variable param is reset to an empty structure
to make sure that no other parameter remains from a previous call.

See also
soapcallset

soapcallset

Options for SOAP call.

Syntax
options = soapcallset
options = soapcallset(name1, value1, ...)
options = soapcallset(options0, name1, value1, ...)

Description
soapcallset(name1,value1,...) creates the option argument used
by soapcall, including the server and port. Options are specified
with name/value pairs, where the name is a string which must match
exactly the names in the table below. Case is significant. Options
which are not specified have a default value. The result is a structure
whose fields correspond to each option. Without any input argument,
soapcallset creates a structure with all the default options. Note that
soapcall also interpret the lack of an option argument, or the empty
array [], as a request to use the default values.

When its first input argument is a structure, soapcallset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
Server ’’ server name or IP address
Port 80 port number
Timeout 10 maximum time in seconds
Debug false true to display data

602 Sysquake Remote ©1999-2016, Calerga Sàrl

If the server is an empty string, it is replaced with ’localhost’.
The Debug field is not included in the default options; when set, it
causes the display of the request and responses.

Example
Default options:

soapcallset
Server: ’’
Port: 80
Timeout: 10

See also
soapcall

soapreadcall

Decode a SOAP call request.

Syntax
(method, namespace, pstruct, url) = soapreadcall(fd)
(method, namespace, pstruct, url) = soapreadcall(str)

Description
soapreadcall(fd), where fd is a file descriptor, reads a complete
SOAP call, decodes it, and returns the result in four output arguments:
the method name and namespace as strings, a structure which con-
tains the parameters, and the URL as a string.

soapreadcall(str) decodes its string argument which must be a
whole SOAP call.

Example
param = {x=pi,y=true};
str = soapwritecall(’’,’/’,’’,’fun’,’namespace’,param);
(method, ns, pstruct, url) = soapreadcall(str)
method =
fun

ns =
namespace

pstruct =
x: 3.1416
y: true

url =
/

Extensions — Web Services 603

See also
soapreadresponse, soapwritecall

soapreadresponse

Decode a SOAP call response.

Syntax
(fault, value) = soapreadresponse(fd)
(fault, value) = soapreadresponse(str)

Description
soapreadresponse(fd), where fd is a file descriptor, reads a com-
plete SOAP response and decodes it. In case of success, it returns true
in the first output argument and the decoded response value in the
second output argument. In case of failure, it returns false and the
fault structure, which contains the fields faultcode (error code as a
string) and faultstring (error message as a string).

soapreadresponse(str) decodes its string argument which must
be a whole SOAP response.

Examples
str = soapwriteresponse(’fun’, ’namespace’, 123);
(fault, value) = soapreadresponse(str)
fault =
false

value =
123

strf = soapwritefault(12int32, ’No power’);
(fault, value) = soapreadresponse(strf)
fault =
true

value =
faultcode: ’12’
faultstring: ’No power’

See also
soapreadcall, soapwriteresponse, soapwritefault

soapwritecall

Encode a SOAP call request.

604 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
soapwritecall(fd, server, url, action, method, ns, params)
soapwritecall(server, url, action, method, ns, params)
str = soapwritecall(server, url, action, method, ns, params)

Description

soapwritecall(fd,server,url,action,method,ns,params) writes
to file descriptor fd a complete SOAP call, including the HTTP header.
If fd is missing, the call is written to standard output (file descriptor
1); since the output contains carriage return characters, it may not be
displayed correctly on all platforms. The server argument is a string
which contains the server name, and, optionally, a colon and the
server port number. url is a string which contains the absolute path
(without the protocol, server, and port part). action is a string which
contains the SOAP action, or is empty if no action is required for the
service. method contains the method name sent to the server; ns is
its XML name space. param, if present, is a structure which contains
the parameters of the SOAP call.

With an output argument, soapwritecall returns the call as a
string, without any output.

Example
param = {x=pi,y=true};
soapwritecall(’server.com’,’/’,’action’,’fun’,’ns’,param)
POST / HTTP/1.1
User-Agent: LME 4.5
Host: server.com
Content-Type: text/xml; charset=utf-8
Content-Length: 495
SOAPAction: action

<?xml version="1.0"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
<SOAP-ENV:Body>
<m:fun xmlns:m="ns">
<x xsi:type="xsd:double">3.1415926535898</x>
<y xsi:type="xsd:boolean">1</y>
</m:fun>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Extensions — Web Services 605

See also
soapwriteresponse, soapreadcall, soapreadresponse

soapwritefault

Encode a SOAP call response fault.

Syntax
soapwritefault(fd, faultCode, faultString)
soapwritefault(faultCode, faultString)
str = soapwritefault(faultCode, faultString)

Description
soapwritefault(fd,faultCode,faultString) writes to file descrip-
tor fd a complete SOAP response fault, including the HTTP header. If
fd is missing, the response is written to standard output (file descrip-
tor 1); since the output contains carriage return characters, it may not
be displayed correctly on all platforms. The faultCode argument is
the fault code as an integer or a string, and the faultString is the
fault message.

With an output argument, soapwritefault returns the response as
a string, without any output.

See also
soapwriteresponse, soapreadresponse

soapwriteresponse

Encode a SOAP call response.

Syntax
soapwriteresponse(fd, method, ns, value)
soapwriteresponse(method, ns, value)
str = soapwriteresponse(method, ns, value)

Description
soapwriteresponse(fd,method,ns,value) writes to file descriptor
fd a complete SOAP response, including the HTTP header. If fd is
missing, the response is written to standard output (file descriptor 1);
since the output contains carriage return characters, it may not be dis-
played correctly on all platforms. The method argument is the method
name as a string; ns is the XML name space; and value is the result
of the call.

With an output argument, soapwriteresponse returns the
response as a string, without any output.

606 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
soapwriteresponse(’fun’, ’namespace’, 123)
HTTP/1.1 200 OK
Connection: close
Server: LME 4.5
Content-Length: 484
Content-Type: text/xml

<?xml version="1.0"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
<SOAP-ENV:Body>
<m:funResponse xmlns:m="namespace">
<Result xsi:type="xsd:double">123.</Result>
</m:funResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

See also
soapwritecall, soapreadresponse, soapreadcall

xmlrpccall

Perform an XML-RPC remote procedure call.

Syntax
response = xmlrpccall(url, method, opt, params...)

Description
xmlrpccall(url,method,opt,params) calls a remote procedure us-
ing the XML-RPC protocol. url (a string) is either the complete URL
beginning with http://, or only the absolute path; in the second case,
the server address and port come from argument opt. method is the
XML-RPC method name as a string; opt is a structure which contains
the options; it is typically created with xmlrpccallset, or can be the
empty array [] for the default options. The remaining input arguments
are sent to the server as parameters of the XML-RPC call.

Examples
The following call requests the current time and date with a complete
URL (it assumes that the computer is connected to the Internet and
that the service is available).

Extensions — Web Services 607

url = ’http://time.xmlrpc.com/RPC2’;
dateTime = xmlrpccall(url, ’currentTime.getCurrentTime’)
dateTime =
2005 1 20 17 32 47

The server address (and the server port if it was not the default value
of 80) can also be specified in the options; then the URL contains only
the absolute path.

server = xmlrpccallset(’Server’, ’time.xmlrpc.com’);
dateTime = xmlrpccall(’/RPC2’, ’currentTime.getCurrentTime’, server)
dateTime =
2005 1 20 17 32 47

See also
xmlrpccallset

xmlrpccallset

Options for XML-RPC call.

Syntax
options = xmlrpccallset
options = xmlrpccallset(name1, value1, ...)
options = xmlrpccallset(options0, name1, value1, ...)

Description
xmlrpccallset(name1,value1,...) creates the option argument
used by xmlrpccall, including the server and port. Options are
specified with name/value pairs, where the name is a string which
must match exactly the names in the table below. Case is significant.
Options which are not specified have a default value. The result is a
structure whose fields correspond to each option. Without any input
argument, xmlrpccallset creates a structure with all the default
options. Note that xmlrpccall also interpret the lack of an option
argument, or the empty array [], as a request to use the default
values.

When its first input argument is a structure, xmlrpccallset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
Server ’’ server name or IP address
Port 80 port number
Timeout 10 maximum time in seconds
Debug false true to display data

608 Sysquake Remote ©1999-2016, Calerga Sàrl

If the server is an empty string, it is replaced with ’localhost’.
The Debug field is not included in the default options; when set, it
causes the display of the request and responses.

Example
Default options:

xmlrpccallset
Server: ’’
Port: 80
Timeout: 10

See also
xmlrpccall

xmlrpcreadcall

Decode an XML-RPC call request.

Syntax
(method, arglist, url) = xmlrpcreadcall(fd)
(method, arglist, url) = xmlrpcreadcall(str)

Description
xmlrpcreadcall(fd), where fd is a file descriptor, reads a complete
XML-RPC call, decodes it, and returns the result in three output argu-
ments: the method name as a string, a list of arguments, and the URL
as a string.

xmlrpcreadcall(str) decodes its string argument which must be
a whole XML-RPC call.

Example
str = xmlrpcwritecall(’rpc.remote.com’, ’/rpc’, ’getPressure’);
(method, arglist, url) = xmlrpcreadcall(str)
method =
getPressure

arglist =
{}

url =
/rpc

See also
xmlrpcreadresponse, xmlrpcwritecall

Extensions — Web Services 609

xmlrpcreadresponse

Decode an XML-RPC call response.

Syntax
(fault, value) = xmlrpcreadresponse(fd)
(fault, value) = xmlrpcreadresponse(str)

Description
xmlrpcreadresponse(fd), where fd is a file descriptor, reads a com-
plete XML-RPC response and decodes it. In case of success, it returns
true in the first output argument and the decoded response value in
the second output argument. In case of failure, it returns false and the
fault structure, which contains the fields faultCode (error code as an
int32) and faultString (error message as a string).

xmlrpcreadresponse(str) decodes its string argument which
must be a whole XML-RPC response.

Examples
str = xmlrpcwriteresponse(123);
(fault, value) = xmlrpcreadresponse(str)
fault =
false

value =
123

strf = xmlrpcwritefault(12int32, ’No power’);
(fault, value) = xmlrpcreadresponse(strf)
fault =
true

value =
faultCode: 12int32
faultString: ’No power’

See also
xmlrpcreadcall, xmlrpcwriteresponse, xmlrpcwritefault

xmlrpcwritecall

Encode an XML-RPC call request.

Syntax
xmlrpcwritecall(fd, server, url, method, params...)
xmlrpcwritecall(server, url, method, params...)
str = xmlrpcwritecall(server, url, method, params...)

610 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
xmlrpcwritecall(fd,server,url,method,params...) writes to file
descriptor fd a complete XML-RPC call, including the HTTP header. If
fd is missing, the call is written to standard output (file descriptor
1); since the output contains carriage return characters, it may not
be displayed correctly on all platforms. The server argument is a
string which contains the server name, and, optionally, a colon and the
server port number. The url argument is a string which contains the
absolute path (without the protocol, server, and port part). The method
argument contains the method name sent to the server. Remaining
input arguments, if any, are sent as parameters.

With an output argument, xmlrpcwritecall returns the call as a
string, without any output.

Example

xmlrpcwritecall(’rpc.remote.com’, ’/rpc’, ’getPressure’, 1int32)
POST /rpc HTTP/1.0
User-Agent: LME 4.5
Host: rpc.remote.com
Content-Type: text/xml
Content-Length: 111

<?xml version="1.0"?>
<methodCall>
<methodName>getPressure</methodName>
<params>
<param>
<value>
<int>1</int>
</value>
</param>
</params>
</methodCall>

See also
xmlrpcwriteresponse, xmlrpcreadcall, xmlrpcreadresponse

xmlrpcwritedata

Encode an XML-RPC value.

Syntax
xmlrpcwritedata(fd, val)
xmlrpcwritedata(val)
str = xmlrpcwritedata(val)

Extensions — Web Services 611

Description
xmlrpcwritedata(fd,val) writes to file descriptor fd the value val
encoded for XML-RPC. If fd is missing, the value is written to standard
output (file descriptor 1); since the output contains carriage return
characters, it may not be displayed correctly on all platforms.

With an output argument, xmlrpcwritedata returns the encoded
value as a string, without any output.

Example
xmlrpcwritedata(pi)
<double>3.141592653589</double>

See also
xmlrpcwritecall, xmlrpcwriteresponse

xmlrpcwritefault

Encode an XML-RPC call response fault.

Syntax
xmlrpcwritefault(fd, faultCode, faultString)
xmlrpcwritefault(faultCode, faultString)
str = xmlrpcwritefault(faultCode, faultString)

Description
xmlrpcwritefault(fd,faultCode,faultString) writes to file
descriptor fd a complete XML-RPC response fault, including the HTTP
header. If fd is missing, the response is written to standard
output (file descriptor 1); since the output contains carriage return
characters, it may not be displayed correctly on all platforms. The
faultCode argument is the numeric fault code, and the faultString
is the fault message.

With an output argument, xmlrpcwritefault returns the response
fault as a string, without any output.

See also
xmlrpcwriteresponse, xmlrpcreadresponse

xmlrpcwriteresponse

Encode an XML-RPC call response.

612 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
xmlrpcwriteresponse(fd, value)
xmlrpcwriteresponse(value)
str = xmlrpcwriteresponse(value)

Description
xmlrpcwriteresponse(fd,value) writes to file descriptor fd a com-
plete XML-RPC response, including the HTTP header. If fd is missing,
the response is written to standard output (file descriptor 1); since the
output contains carriage return characters, it may not be displayed
correctly on all platforms. The value argument is the result of the call.

With an output argument, xmlrpcwriteresponse returns the re-
sponse as a string, without any output.

Example
xmlrpcwriteresponse(123)
HTTP/1.1 200 OK
Connection: close
Server: LME 4.5
Content-Length: 123
Content-Type: text/xml

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<double>123.</double>
</param>
</params>
</methodResponse>

See also
xmlrpcwritecall, xmlrpcreadresponse, xmlrpcreadcall

6.12 Signal

This section describes functions which offer support for POSIX signals,
i.e. a way for LME to be interrupted asynchronously from another
process. They map directly to the kill and signal POSIX functions;
therefore, they can interoperate with programs which call them di-
rectly.

These functions are available only on Posix systems, such as ma-
cOS.

Extensions — signal 613

Functions

getpid

Get the current process ID.

Syntax
pid = getpid

Description
getpid gives the ID of the current process.

See also
kill

kill

Send a signal to another process.

Syntax
kill(pid)
kill(pid, sig)

Description
kill(pid) sends signal 2 (SIGINT) to process pid. kill(pid,sig)
sends signal sig given as a number between 1 and 31 or as a name
in a string (see signal for a list).

See also
signal, getpid

signal

Install a signal action.

Syntax
signal(sig, fun)
signal(sig)

614 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
signal(sig,fun) installs function fun as the action for signal sig.
fun can be a function name in a string, a function reference, or an in-
line function with neither input nor output argument; sig is the num-
ber of the signal between 1 and 31, or its name as a string. The follow-
ing names are recognized (standard POSIX names compatible with the
program or shell command kill and C header file signal.h); case is
not significant, and names can be prefixed with ’sig’.

Name Number Name Number
’hup’ 1 ’stop’ 17
’int’ 2 ’tstp’ 18
’quit’ 3 ’cont’ 19
’ill’ 4 ’chld’ 20
’trap’ 5 ’ttin’ 21
’abrt’ 6 ’ttou’ 22
’emt’ 7 ’io’ 23
’fpe’ 8 ’xcpu’ 24
’kill’ 9 ’xfsz’ 25
’bus’ 10 ’vtalrm’ 26
’segv’ 11 ’prof’ 27
’sys’ 12 ’winch’ 28
’pipe’ 13 ’info’ 29
’alrm’ 14 ’usr1’ 30
’term’ 15 ’usr2’ 31
’urg’ 16

Note that signals 9 and 17 cannot be caught. Once a signal action
has been installed, if the specified signal is sent to the LME applica-
tion (typically with the LME or POSIX function kill), the function fun
is executed as soon as possible, at a time when it does not corrupt the
LME execution data. It can exchange information with the normal exe-
cution of LME via global variables; but semaphores cannot be used to
guarantee exclusive access, because the signal action is not executed
in a separate thread and locked semaphores could not be unlocked by
the main thread.

Example
Install a signal action which is triggered by signal usr1:

fun = inline(’function f;fprintf(’’Got signal usr1\n’’);’);
signal(’usr1’, fun);

Get process ID (the number is likely to be different):

getpid
22716

Extensions — signal 615

From another shell, use the program or shell command kill to send a
signal to LME:

kill -SIGUSR1 22716

See also
kill, threadnew

Chapter 7

External Code

Calls to external code are useful in three situations:

– when LME, the language of Sysquake, is not fast enough for some
computation-intensive algorithms, or when you already have im-
plemented the algorithm in another language;

– when you want to use features of the operating system not sup-
ported by LME;

– when you want to communicate with other devices.

Among examples belonging to the third case, one can mention updat-
ing the parameters of a real-time controller running with a real pro-
cess, collecting experimental data to obtain a model, or changing the
coefficients of an audio filter to add a new dimension to what the user
perceives.

7.1 Implementation

Calls to external code are performed by calling functions in a shared
library, also known as dynamic link library. Several shared libraries
can be used simultaneously, and each of them can contain several
functions. Each function must have the following prototype, given
here in ISO (ANSI) C using the header file LME_Ext.h. Other languages
can also be used, provided that the same calling conventions are used.
In C++, for instance, prototypes must be preceded by extern "C" to
disable name mangling.

lme_err fn(lme_ref lme, lme_int nargin, lme_int nargout)

Its three arguments are:

618 Sysquake Remote ©1999-2016, Calerga Sàrl

lme_ref lme Pointer to a reference to the LME instance which calls
the function, to be used with callbacks, and to the callbacks them-
selves. Definitions in LME_Ext.h assume this argument is named
lme. It should be passed to all sub-functions which use callbacks.

lme_int nargin Number of input arguments.

lme_int nargout Number of output arguments. If the function
accepts 0 or more arguments and is called with nargout=0, it can
return one output argument anyway; this result is stored in the
variable ans and displayed if the function is at the top level of the
expression and is not followed by a semicolon.

The output of the function is 1 for success or 0 for failure.
Retrieving the value of the input arguments and setting the out-

put arguments are performed with the help of callback functions (i.e.
functions implemented in LME which are called back by the extension;
the header file LME_Ext.h hide the implementation details). Currently,
arguments can be real or complex matrices, arrays of any dimension
and type supported by LME, strings, lists, structures, structure arrays,
and binary objects. Callback functions which manipulate arguments
return 1 if the call is successful, or 0 otherwise. Failures are not fatal;
for example, if a string or numeric argument is expected, you may try
to retrieve a string, then try to get a number (or a numeric matrix) if
it fails.

Input arguments can be retrieved in any order. Output arguments
must be pushed in reverse order, beginning with the last one; or in
normal order from first to last if LMECB_ReverseOutputArguments is
called once all the arguments have been pushed. Exactly nargout
values must be pushed.

7.2 Callbacks

Here is a list of callback functions to get input arguments, set output
arguments, throw errors, and output information.

Get input arguments

lme_err LMECB_GetMatrix(lme_int i, lme_int *m, lme_int
*n, lme_float **re, lme_float **im) Retrieves the i:th
input argument as a double matrix (a 2-d array). The index i must
be between 1 and nargin inclusive. *m and *n are set to the
number of rows and the number of columns of the matrix,
respectively (1 and 1 mean a scalar number); *re is set to a
pointer to the real part, and *im to a pointer to the imaginary part
if it exists, or to a null pointer otherwise. im can be a null pointer

External Code 619

(NULL or 0) if the imaginary part is not needed. Values are
currently stored row-wise; i.e. the real part of the 5th element
of the 4th row is (*re)[(4-1)*n+(5-1)]. But this might
change in the future: values could be stored column-wise,
with the real part of the 5th element of the 4th row stored at
(*re)[(4-1)+(5-1)*m]. You can anticipate the change by
checking if k_lme_array_item_row_wise is defined.

lme_err LMECB_GetScalar(lme_int i, lme_float *re,
lme_float *im) Retrieves the i:th input argument as a scalar
number. The index i must be between 1 and nargin inclusive.
*re is set to the real part, and *im (in im is not null) to the
imaginary part if it exists, or to 0 otherwise. The argument can be
any numeric type (double, single, or any integer type).

lme_err LMECB_GetArray(lme_int i, lme_int *ndims, lme_int
*size, lme_int *nbytes, lme_int *type,void **data)
Retrieves the i:th input argument as an array. The index i
must be between 1 and nargin inclusive. *ndims is set to
the number of dimensions (2 or larger); *size (an array of
k_lme_max_ndims elements) is filled with the *ndims dimensions;
*nbytes is set to the number of bytes per element; *type
to k_lme_type_signed_int, k_lme_type_unsigned_int,
k_lme_type_realfloat, k_lme_type_complexfloat,
k_lme_type_char, k_lme_type_logical, or k_lme_type_null;
and *data, to a pointer to the data. For complex numbers,
imaginary part is stored as a separate array, after the real part.

lme_err LMECB_GetString(lme_int i, lme_string8 *str,
lme_int *length) Retrieves the i:th input argument as a
string. *str is set to a pointer to the beginning of the string,
and *length to the string length. Note that the string is not
null-terminated.

lme_err LMECB_GetBinaryObject(lme_int i, lme_int *size,
void **data) Retrieves the i:th input argument as a binary
object. *size, if size is not null, is set to its size in bytes, and
*data to its address. Each extension has its own, unique binary
object; an extension cannot retrieve a binary object created by
another extension.

lme_err LMECB_GetObject(lme_int i, lme_object *o)
Retrieves the i:th input argument as a generic object. *o is set to
a reference to the object. It is a structure whose first field,
o->objtype, is public and describes the type of the object:

620 Sysquake Remote ©1999-2016, Calerga Sàrl

Enum Value Object type
k_lme_obj_unknown 0 Unknown (other)
k_lme_obj_array 1 Array of any type
k_lme_obj_list 2 List
k_lme_obj_struct 3 Structure
k_lme_obj_structarray 4 Structure array

Other fields are private. Functions below permit to extract the ob-
ject contents.

lme_err LMECB_ObjectToArray(lme_object const *o, lme_int
*ndims, lme_int *size, lme_int *nbytes, lme_int *type,
void **data) Gets an array of any type from a generic object.
No conversion is performed; the object must be an array.
Arguments have the same meaning as those of LMECB_GetArray.

lme_err LMECB_ObjectLength(lme_object const *o, lme_int
*length) Gives the length of a list or the number of fields of a
structure from a generic object.

lme_err LMECB_GetElementFromListObject(lme_object const
*o, lme_int i, lme_object *el) Gets an element of a list as
a generic object. *el is set to a reference to element i (first is
i=1) of the list object referenced by *o.

lme_err LMECB_GetFieldNameFromStructObject(lme_object
const *o, lme_int i, lme_char8 name[]) Gets the name of
field i (first is i=1) of the structure object or structure array object
referenced by *o. The name is stored in string name which must
contain at least k_lme_fieldname_maxlength (32) characters. It
is terminated by the null character.

lme_err LMECB_GetFieldFromStructObject(lme_object const
*o, lme_string8 name, lme_object *fld) Gets a field of
structure *o as a generic object. *fld is set to a reference to the
field whose name is the null-terminated string name.

lme_err LMECB_GetFieldFromStructArrayObject(lme_object
const *o, lme_int i, lme_string8 name, lme_object *fld)
Gets a field of structure object *o as a generic object. *fld is set
to a reference to the field whose name is the null-terminated
string name of element i (first is i=1).

Set output arguments

lme_err LMECB_PushMatrix(lme_int m, lme_int n, lme_float
**re, lme_float **im) Pushes a matrix output argument on
the stack. m and n are the number of rows and the number of

External Code 621

columns of the matrix, respectively; *re is set to a pointer to the
real part of the matrix, and *im to a pointer to its imaginary part.
To push a real matrix, set im to a null pointer (NULL or 0). After the
call, you should store the value of the matrix to the place pointed
by *re and *im.

lme_err LMECB_PushArray(lme_int ndims, lme_int *size,
lme_int nbytes, lme_int type, void **data) Pushes
an array output argument on the stack. ndims is the
number of dimensions; size, a vector of ndims dimensions;
nbytes, the number of bytes per element; type, the array
type (cf. LMECB_GetArray); and *data is set to a pointer to
the place where the array must be stored. nbytes must be
1 for k_lme_type_logical; 2 for k_lme_type_char; 8 for
k_lme_type_realfloat and k_lme_type_complexfloat; 1, 2, or
4 for k_lme_type_signed_int and k_lme_type_unsigned_int; or
0 for k_lme_type_null.

If one does not know the size of the array before filling it, one
can replace one (and only one) dimensions in size with -1;
LMECB_PushArray will replace it with the largest possible value,
which depends on the memory available. Then the array can be
filled (with the element layout determined by the final size), and a
second call to LMECB_PushArray with the final size must be
performed before pushing other output arguments (if any) and
returning.

lme_err LMECB_StartPushString(lme_int length, lme_string8
*str) Begins to push a string output argument on the stack,
containing 8-bit characters (LMECB_PushArray should be used to
push strings with characters whose code is larger that 255). The
string length is specified in length; *str is set to a pointer to the
buffer where you should store the string itself. The string must not
be null-terminated. Once the string is stored, and before pushing
anything else, call LMECB_EndPushString() to convert the string
to the LME internal format.

lme_err LMECB_EndPushString() Finishes the string pushing op-
eration.

lme_err LMECB_PushBinaryData(lme_int size, void **data)
Pushes an uninitialized binary object with room for size bytes on
the stack. *data is set to its address, so that it can be filled. In
addition to functions which create and use binary objects, you can
overload existing functions, operators such as plus or mtimes,
subscript and field access such as subsref and subsasgn, and
function disp to display the value.

lme_err LMECB_PushNull() Pushes a null object on the stack.

622 Sysquake Remote ©1999-2016, Calerga Sàrl

lme_err LMECB_PushEmptyList() Pushes an empty list on the
stack. Elements can be added by pushing them and appending
them to the list with LMECB_AddListElement.

lme_err LMECB_AddListElement() Adds the object at the top of
the stack to the end of the list below it.

lme_err LMECB_PushEmptyStructure() Pushes an empty struc-
ture on the stack. Fields can be added by pushing them and ap-
pending them to the structure with LMECB_AddStructureField.

lme_err LMECB_AddStructureField(lme_string8 fieldName)
Adds the object at the top of the stack to the end of the structure
below it as a field with name fieldName. fieldName is a
null-terminated string.

lme_err LMECB_ConvertStructListToStructArray(lme_int
ndims, lme_int const *size) Converts the list of structures
which has just been pushed to a structure array of the specified
size, or to a one-column structure array if ndims is zero or size is
NULL. This is the only way to create a structure array: first
build a list of (scalar) structures with LMECB_PushEmptyList,
LMECB_PushEmptyStructure, LMECB_AddStructureField and
LMECB_AddListElement, then convert it to a structure array with
LMECB_ConvertStructListToStructArray. No more fields or
elements can be added to the structure array afterwards.

lme_err LMECB_ReverseOutputArguments() Reverse the order of
output arguments which have been pushed thus far. Useful when it
is more convenient to push the output arguments from first to last.

Options

lme_err LMECB_SetOptions(lme_int nargin) To implement
functions which create an option structure like optimset
or odeset, the default option structure should be created
irrespective of input arguments, then LMECB_SetOptions is called.

Memory allocation

void *LMECB_AllocTemp(lme_int n) Allocates n bytes of tempo-
rary memory. Allocating memory must be done after all output
arguments have been pushed. Except for strings, this is not a prob-
lem, because matrices may be filled later. A null pointer is returned
if the allocation fails. The memory needs not be freed.

External Code 623

Output and error handling

void LMECB_Write(lme_int fd, lme_string8 ptr, lme_int
len, lme_int textMode) Writes the data of size len pointed
by ptr to the output channel identified by the file descriptor fd. If
len is negative, data must be null-terminated. The file descriptor
must have a value compatible with those used by LME functions
like fprintf and fwrite. If textMode is non-zero, characters ’\n’
(10) are converted to the end-of-line sequence valid for the file
descriptor.

lme_err LMECB_Error(lme_string8 identifier, lme_string8
message) Throws an error with the specified identifier and
message, both null-terminated strings. Null pointers are valid. The
function which throws an error should return with the value
returned by LMECB_Error (i.e. the usual code to throw an error is
return LMECB_Error(...);).

lme_err LMECB_CheckAbort() Checks if the user interrupts the
computation, typically by pressing Control-Break on Windows,
Command-. on Mac or Control-C on Linux. If the status code it
returns is non-zero, computation should be aborted. This function
can be called during lengthy computation to avoid blocking the
application.

void LMECB_DbgWriteStr(lme_string8 str) Writes the
null-terminated string str to the standard error, followed by a new
line. This is typically used during development for debugging
purposes.

Client data

lme_err LMECB_ClientData(lme_string8 name, lme_int size,
void **addr) Get the address of a named block of memory.
Any data can be stored there. Each LME instance has a unique
copy for a given name. The first time LMECB_ClientData is called
for a given name, the block is allocated with the specified size (in
bytes) and initialized to 0; then argument size is ignored.

7.3 Start up and shut down

Functions are added to the set of built-in functions when LME starts
up. They effectively extend LME. To permit LME to load them, you
must provide the following function, named InstallFn:

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{

624 Sysquake Remote ©1999-2016, Calerga Sàrl

/* initialize any resource necessary for the
functions */

*fnarray = [array of function descriptions];
return [number of elements in *fnarray];

}

The essential purpose of this function, which must be exported
with whatever mechanism is available on your platform
(__declspec(dllexport) for DLL on Windows or the PEF export
options on Mac OS 9), is to refer LME to an array of function
descriptions. This array, which is typically defined as static, has
elements of type lme_fn:

typedef struct
{

char name[32];
lme_extfn fn;
lme_int minnargin, maxnargin;
lme_int minnargout, maxnargout;

} lme_fn;

The field name is the name of the function (what you will use in your SQ
files), fn is a pointer to the function which implements the behavior of
the function, minnargin and maxnargin are the minimum and maxi-
mum number of input arguments your function is ready to accept, and
minnargout and maxnargout are the minimum and maximum number
of output arguments your function is ready to provide. Typically, if your
function can provide output argument(s), you should set minnargout
to 1; LME will display a result if you omit the semicolon at the end of a
call to your function.

You can implement new types of object (binary objects), at most
one per extension. Functions can overload existing functions in a sim-
ilar way as for objects defined with class. Overloaded functions must
begin with the prefix lme_k_binary_overload_str_prefix; for exam-
ple to define a function plus for the addition of your binary objects,
the entry in the array of functions would be

{lme_k_binary_overload_str_prefix "plus",
overloadedPlus, 2, 2, 1, 1}

This prefix must not be used for functions unless they take binary
objects as input arguments. See the example 3 below for a complete
example.

You can also allocate resources in InstallFn (such as opening
files); in that case, you want to define and export a function named
ShutdownFn to release these resources when LME terminates:

void ShutdownFn(lme_ref lme)
{

/* release all resources allocated by InstallFn */
}

External Code 625

7.4 Examples

The following extension adds two functions to LME: plus1 which ac-
cepts up to 50 double real or complex matrix arguments and return
them in the same order with 1 added, and hi which displays a mes-
sage if there is no output argument, or returns it as a string if there is
one.

#include "LME_Ext.h"
#include <string.h>

static lme_err plus1(lme_ref lme,
lme_int nargin, lme_int nargout)

/* same as (x+1), but with multiple arguments */
{
int i, j;
lme_float *re, *im, *re1, *im1;
lme_err status;
lme_int m, n;

for (i = nargout; i >= 1; i-) /* backward */
{
if (i <= nargin)
{
status = LMECB_GetMatrix(i, &m, &n, &re, &im);
if (!status)
return 0;

status = LMECB_PushMatrix(m, n, &re1, im ? &im1 : 0);
if (!status)
return 0;

for (j = 0; j < m * n; j++)
re1[j] = re[j] + 1;

if (im)
for (j = 0; j < m * n; j++)
im1[j] = im[j];

}
else
if (!LMECB_PushMatrix(0, 0, &re1, 0))

return 0;
}

return 1;
}

static lme_err hi(lme_ref lme,
lme_int nargin, lme_int nargout)

/* hello world */
{
char *msg = "Hello, World!";

626 Sysquake Remote ©1999-2016, Calerga Sàrl

if (nargout == 1)
{
lme_string8 str;
int i;

if (!LMECB_StartPushString(strlen(msg), &str))
return 0;

for (i = 0; i < strlen(msg); i++) /* without the ’\0’ */
str[i] = msg[i];

if (!LMECB_EndPushString())
return 0;

}
else

LMECB_DbgWriteStr(msg);

return 1;
}

static lme_fn fn[] =
{
{"plus1", plus1, 0, 50, 0, 50},
{"hi", hi, 0, 0, 0, 1}

};

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{
LMECB_DbgWriteStr("Installing test functions.");
*fnarray = fn;
return 2;

}

The extension below implements displayobject which displays the
skeleton of its input argument. It shows how to scan all elements of a
list or a structure.

#include "LME_Ext.h"
#include <stdio.h>

static lme_err displayRec(lme_ref lme, lme_object *o)
/* called recursively */

{
lme_int status = 1, ndims, *size, len, i;
lme_object el;
lme_char8 str[k_lme_fieldname_maxlength];

switch (o->objtype)
{
case k_lme_obj_unknown:
LMECB_Write(1, "unknown", -1, 1);
break;

case k_lme_obj_array:

External Code 627

LMECB_Write(1, "array(", -1, 1);
status = LMECB_ObjectToArray(o, &ndims, &size,

NULL, NULL, NULL);
if (!status)
return 0;

for (i = 0; i < ndims; i++)
{
sprintf(str, i > 0 ? "x%d" : "%d", size[i]);
LMECB_Write(1, str, -1, 1);

}
LMECB_Write(1, ")", -1, 1);
break;

case k_lme_obj_list:
LMECB_Write(1, "{", -1, 1);
status = LMECB_ObjectLength(o, &len);
for (i = 1; status && i <= len; i++)
{
if (i > 1)
LMECB_Write(1, ",", -1, 1);

status = LMECB_GetElementFromListObject(o, i, &el);
if (status)
status = displayRec(lme, &el);

}
LMECB_Write(1, "}", -1, 1);
break;

case k_lme_obj_struct:
LMECB_Write(1, "struct(", -1, 1);
status = LMECB_ObjectLength(o, &len);
for (i = 1; status && i <= len; i++)
{
if (i > 1)
LMECB_Write(1, ",", -1, 1);

status = LMECB_GetFieldNameFromStructObject(o, i, str);
if (!status)
break;

LMECB_Write(1, str, -1, 1);
LMECB_Write(1, "=", -1, 1);
status = LMECB_GetFieldFromStructObject(o, str, &el);
if (status)
status = displayRec(lme, &el);

}
LMECB_Write(1, ")", -1, 1);
break;

}
return status;

}

static lme_err displayobject(lme_ref lme,
lme_int nargin, lme_int nargout)

/* display argument */

628 Sysquake Remote ©1999-2016, Calerga Sàrl

{
lme_object o;
if (!LMECB_GetObject(1, &o) || !displayRec(lme, &o))

return 0;
LMECB_Write(1, "\n", -1, 1);
return 1;

}

static lme_fn fn[] =
{
{"displayobject", displayobject, 1, 1, 0, 0}

};

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{
LMECB_DbgWriteStr("Installing displayobject.");
*fnarray = fn;
return 1;

}

The extension below implements a new type for integer arithmetic
modulo n. The function modint(i,n) creates a new object of this
type. Operators +, - (binary and unary), and * are overloaded to sup-
port expressions like modint(2,7)*3+5, whose result would be 4 (mod
7). The function disp is also overloaded; it can be called explicitly, but
also implicitly to display the result of an expression which is not fol-
lowed by a semicolon.

#include "LME_Ext.h"
#include <stdio.h>

typedef struct
{
long i, n;

} Data;

static lme_err modint(lme_ref lme,
lme_int nargin, lme_int nargout)

// modint(i, n) -> create a binary object
// for arithmetic modulo n

{
lme_float x, y;
Data *result;

if (!LMECB_GetScalar(1, &x, NULL)
|| !LMECB_GetScalar(2, &y, NULL))

return 0;
if (!LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

External Code 629

result->n = (long)y;
result->i = (long)x;
return 1;

}

static lme_err getTwoArgs(lme_ref lme,
Data *data1, Data *data2)

// get two numbers with at least one binary object
{
Data *d;
lme_float x;

if (LMECB_GetBinaryData(1, NULL, (void **)&d))
{
*data1 = *data2 = *d;
if (LMECB_GetBinaryData(2, NULL, (void **)&d))
{
// binary, binary
*data2 = *d;
return 1;

}
else if (LMECB_GetScalar(2, &x, NULL))
{
// binary, scalar
data2->i = (long)x;
return 1;

}
else
return 0;

}
else
{
// 1st arg is not binary, hence 2nd should be
if (LMECB_GetBinaryData(2, NULL, (void **)&d))
*data1 = *data2 = *d;

else
return 0;

if (!LMECB_GetScalar(1, &x, NULL))
return 0;

data1->i = (long)x;
return 1;

}
}

static lme_err plus(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded operator + for arithmetic modulo n
{
Data data1, data2, *result;

630 Sysquake Remote ©1999-2016, Calerga Sàrl

if (!getTwoArgs(lme, &data1, &data2)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

result->n = data1.n;
result->i = (data1.i + data2.i) % data1.n;
return 1;

}

static lme_err minus(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded operator - for arithmetic modulo n
{
Data data1, data2, *result;

if (!getTwoArgs(lme, &data1, &data2)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

result->n = data1.n;
result->i = (data1.n + data1.i - data2.i) % data1.n;
return 1;

}

static lme_err mtimes(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded operator * for arithmetic modulo n
{
Data data1, data2, *result;

if (!getTwoArgs(lme, &data1, &data2)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

result->n = data1.n;
result->i = (data1.i * data2.i) % data1.n;
return 1;

}

static lme_err uminus(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded unary operator - for arithmetic modulo n
{
Data *data, *result;

if (!LMECB_GetBinaryData(1, NULL, (void **)&data)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

External Code 631

result->n = data->n;
result->i = (data->n - data->i) % data->n;
return 1;

}

static lme_err disp(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded "disp" function to display binary object
{
Data *data;
char str[64];

if (!LMECB_GetBinaryData(1, NULL, (void **)&data))
return 0;

sprintf(str, "%ld (mod %ld)\n", data->i, data->n);
LMECB_Write(1, str, -1, 1);
return 1;

}

static lme_err subsref(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded subsref (field access) to get
// the contents of binary object
// b.i === subsref(b, {type=’.’,subs=’i’}) -> value
// b.n === subsref(b, {type=’.’,subs=’n’}) -> modulo

{
Data *data;
lme_object o, fld;
unsigned short *str;
lme_int ndims, *size, nbytes, type;
lme_float *res;

if (!LMECB_GetBinaryData(1, NULL, (void **)&data)
|| !LMECB_GetObject(2, &o))

return 0;

// extract field name from 2nd arg
if (!LMECB_GetFieldFromStructObject(&o, "type", &fld)

|| !LMECB_ObjectToArray(&fld, &ndims, &size,
&nbytes, &type, (void **)&str)

|| ndims != 2 || size[0] * size[1] != 1
|| type != k_lme_type_char
|| (char)str[0] != ’.’
|| !LMECB_GetFieldFromStructObject(&o, "subs", &fld)
|| !LMECB_ObjectToArray(&fld, &ndims, &size,

&nbytes, &type, (void **)&str)
|| ndims != 2 || type != k_lme_type_char)

return LMECB_Error("LME:wrongType", NULL);
if (size[0] * size[1] != 1

632 Sysquake Remote ©1999-2016, Calerga Sàrl

|| (char)str[0] != ’i’ && (char)str[0] != ’n’)
return LMECB_Error("LME:undefField", NULL);

// push result
if (!LMECB_PushMatrix(1, 1, &res, NULL))

return 0;
*res = (char)str[0] == ’i’ ? data->i : data->n;

return 1;
}

static lme_fn fn[] =
{
{"modint", modint, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "plus", plus, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "minus", minus, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "mtimes", mtimes, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "uminus", uminus, 1, 1, 1, 1},
{lme_k_binary_overload_str_prefix "disp", disp, 1, 1, 0, 0},
{lme_k_binary_overload_str_prefix "subsref", subsref, 2, 2, 1, 1}

};

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{
LMECB_DbgWriteStr("modint: modint, disp, minus, mtimes, plus, "

"subsref, uminus");
*fnarray = fn;
return 7;

}

7.5 Remarks

We have three suggestions to make the development of your external
functions easier:

– Check whether your functions are loaded correctly by typing info
b in the command-line window. Your new functions should appear
in the list.

– Use a source-level debugger and break into your code to check
how LME calls your functions.

– During development, add LMECB_DbgWriteStr calls to your code,
including in InstallFn (and ShutdownFn if it exists), especially
if your development environment does not support source-level
debugging.

Chapter 8

Libraries

Libraries are collections of functions which complement the set of
built-in functions and operators of LME, the programming language
of Sysquake. To use them, type (or add in the functions block of the
SQ files which rely on them) a use command, such as

use stdlib

bench bench implements a benchmark which can be used to com-
pare the performance of LME on different platforms.

bitfield bitfield implements constructors and methods for bit
fields (binary numbers). Standard operators are redefined to en-
able the use of & and | for bitwise operations, and subscripts for bit
extraction and assignment.

colormaps colormaps defines functions which create color maps
for command colormap.

constants constants defines physical constants in SI units.

date date implements functions for date and time manipulation
and conversion to and from strings.

filter filter implements functions for the design of analog and
digital filters.

lti lti implements constructors and methods for Linear
Time-Invariant models, whcih may represent dynamical systems
as continuous-time or discrete-time state-space models or
transfer functions. With them, you can use standard operator
notations such as + or *, array building operators such as
[A,B;C,D], connection functions such as parallel or feedback,
and much more.

634 Sysquake Remote ©1999-2016, Calerga Sàrl

lti_filter lti_filter implements functions for the design of
analog and digital filters given as lti objects.

lti_gr lti_gr, loaded automatically with lti, defines methods
which provide for lti objects the same functionality as the native
graphical functions of Sysquake for dynamical systems, such as
bodemag for the magnitude of the Bode diagram or step for the
step response.

polyhedra polyhedra implements functions which create solid
shapes with polygonal faces in 3D.

polynom polynom implements constructors and methods for poly-
nomial and rational functions. With them, you can use standard
operator notations such as + or *.

probdist probdist defines classes for probability distributions.

sigenc sigenc implements functions related to signal encoding to
and decoding from a digital representation.

solids solids implements functions which create solid shapes in
3D. Solids are generated with parametric equations and displayed
with surf.

stat stat provides more advanced statistical functions.

stdlib stdlib is the standard library of general-purpose functions
for LME. Functions span from array creation and manipulation to
coordinates transform and basic statistics.

wav wav implements functions for reading and writing WAV files, or
encoding and decoding data encoded as WAV in memory.

8.1 sqr

sqr is a library which adds functions to Sysquake Remote, such as
support for forms.

To have the functions defined in sqr always available, add the fol-
lowing directive to the Apache configuration file:

SQRStartup use sqr;

Alternatively (or in addition), you can have the following statement in
a <?sqr...?> block of SQR files which use the library:

use sqr

Libraries — sqr 635

processhtmlform

Obtain and process form data submitted by the browser.

Syntax
(s, err) = processhtmlform(format, fieldnames, s0)

Description
processhtmlform(format,fieldnames,s0) obtains data submitted
by the user with methods GET or POST. For each field recognized, it
replaces the corresponding value in structure s0. Then it returns the
modified structure as the first output argument. The input arguments
are the same as those expected by displayhtmlform.

The optional second output argument is an error string which is
empty if no error occurred, or an error message otherwise. It is not
considered to be an error when the data submitted by the browser
does not match what is expected.

processhtmlform can be called before displayhtmlform in order
to display again the data submitted by the user. In this case, the first
time the page is processed, processhtmlform leaves the structure s0
unmodified.

See also
displayhtmlform

displayhtmlform

Display an HTML form.

Syntax
(s, err) = displayhtmlform(format, fieldnames, s)
(s, err) = displayhtmlform(format, fieldnames, s, method)
(s, err) = displayhtmlform(format, fieldnames, s, method, action)

Description
displayhtmlform(format,fieldnames,s) produces the HTML code
required to display a form, i.e. a set of text fields and controls which
the user can fill or change. The form contents are based on the value
of the fields of structure s. The way the form is displayed is based
on string format, which has the same role as the format string of
fprintf. List s maps each control specified in format to a field of s.

A fourth input argument can specify the method, usually ’POST
or ’GET’ (the default is ’POST’). If it is the empty string, form tags

636 Sysquake Remote ©1999-2016, Calerga Sàrl

<form ...> and </form> are not produced by displayhtmlform;
they should be output explicitly. This permits to insert other <input>
tags which are not supported directly, such as interactive images; or
to specify other form attributes.

A fifth input argument can specify the action (the target page). By
default, or with an empty string, submitted form data are sent to the
same page.

displayhtmlform scans format and display most of its characters
unmodified. It recognizes the sequences of characters in the table
below, which it replaces with HTML code.

Sequence Meaning Field value
%{size}n number (size char. in text field) real scalar number
%c checkbox logical scalar value
%{size}s string (size char. in text field) string
%{size}p password (size char. in password field) string
%{r,c}t textarea of r rows and c columns string
%f file string (output only)
%F filename string (input only)
%{e1,e2,...}m menu with comma-separated entries selected entry as an index or a string
%h hidden field string
%{label}R reset button (none)
%{label,name}S submit button true if clicked, false otherwise
%{e1,e2,...}r radio buttons with comma-separated entries selected button as an index or a string
%% character % (none)
\t next column (see below) (none)
\n line break (
 in HTML) or next row (none)

When the format string contains tabs (’\t’), the form is placed in a
table. In the format string, rows are separated with line feeds (’\n’)
and columns with tabs. This permits the vertical alignment of ele-
ments, for instance when text fields follow labels.

Examples
A form with different types of inputs and two submit buttons is dis-
played and processed. Processing is done before display, so that set-
tings which have just been changed are used to set input values ac-
cordingly.

use sqr;
format = [’x: %n\n’, ...
’str: %50s\n’, ...
’b: %c\n’, ...
’r: %{alpha,beta,gamma}r\n’, ...
’Select: %{one,two,three,four,five}m\n’, ...
’%{Revert}R%{Submit #1,submit1}S%{Submit #2,submit2}S’];

names = {’x’,’s’,’b’,’r’,’m’};
s0 = struct(’x’,123.456, ’s’,’foo’, ’b’,true, ’r’,’alpha’, ’m’,2);

Libraries — stdlib 637

s = processhtmlform(format, names, s0);
displayhtmlform(format, names, s, ’GET’);

A login form with fields for a name and a password, with vertical align-
ment given by tabs:

format = ’Name:\t%20s\nPassword:\t%20p’;
names = {’name’, ’pass’};
s0 = struct(’name’, ’’, ’pass’, ’’);
displayhtmlform(format, names, s0, ’POST’);

See also
processhtmlform, beginfigure

8.2 stdlib

stdlib is a library which extends the native LME functions in the fol-
lowing areas:

– creation of matrices: blkdiag, compan, hankel, toeplitz

– geometry: subspace

– functions on integers: primes

– statistics: corrcoef, perms

– data processing: circshift, cumtrapz, fftshift, filter2,
hist, ifftshift, polyfit, polyvalm, trapz

– other: isreal, sortrows

The following statement makes available functions defined in stdlib:

use stdlib

Functions

circshift

Shift the elements of a matrix in a circular way.

Syntax
use stdlib
B = circshift(A, shift_vert)
B = circshift(A, [shift_vert, shift_hor])

638 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
circshift(A,sv) shifts the rows of matrix A downward by sv rows.
The sv bottom rows of the input matrix become the sv top rows of the
output matrix. sv may be negative to go the other way around.

circshift(A,[sv,sh]) shifts the rows of matrix A downward by sv
rows, and its columns to the right by sh columns. The sv bottom rows
of the input matrix become the sv top rows of the output matrix, and
the sh rightmost columns become the sh leftmost columns.

See also
rot90, fliplr, flipud

blkdiag

Block-diagonal matrix.

Syntax
use stdlib
X = blkdiag(B1, B2, ...)

Description
blkdiag(B1,B2,...) creates a block-diagonal matrix with matrix
blocks B1, B2, etc. Its input arguments do not need to be square.

Example
use stdlib
blkdiag([1,2;3,4], 5)
1 2 0
3 4 0
0 0 5

blkdiag([1,2], [3;4])
1 2 0
0 0 3
0 0 4

See also
diag

compan

Companion matrix.

Libraries — stdlib 639

Syntax
use stdlib
X = compan(pol)

Description
compan(pol) gives the companion matrix of polynomial pol, a square
matrix whose eigenvalues are the roots of pol.

Example
use stdlib
compan([2,3,4,5])
-1.5 -2.0 -2.5
1.0 0.0 0.0
0.0 1.0 0.0

See also
poly, eig

corrcoef

Correlation coefficients.

Syntax
use stdlib
S = corrcoef(X)
S = corrcoef(X1, X2)

Description
corrcoef(X) calculates the correlation coefficients of the columns of
the m-by-n matrix X. The result is a square n-by-n matrix whose diag-
onal is 1.

corrcoef(X1,X2) calculates the correlation coefficients of
X1 and X2 and returns a 2-by-2 matrix. It is equivalent to
corrcoef([X1(:),X2(:)]).

Example
use stdlib
corrcoef([1, 3; 2, 5; 4, 4; 7, 10])
1 0.8915
0.8915 1

corrcoef(1:5, 5:-1:1)
1 -1

-1 1

640 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
cov

cumtrapz

Cumulative numeric integration with trapezoidal approximation.

Syntax
use stdlib
S = cumtrapz(Y)
S = cumtrapz(X, Y)
S = cumtrapz(X, Y, dim)

Description
cumtrapz(Y) calculates an approximation of the cumulative integral
of a function given by the samples in Y with unit intervals. The trape-
zoidal approximation is used. If Y is neither a row nor a column vector,
integration is performed along its columns. The result has the same
size as Y. The first value(s) is (are) 0.

cumtrapz(X,Y) specifies the location of the samples. A third argu-
ment may be used to specify along which dimension the integration is
performed.

Example
use stdlib
cumtrapz([2, 3, 5])
0 2.5 6.5

cumtrapz([1, 2, 5], [2, 3, 5])
0 2.5 14.5

See also
cumsum, trapz

fftshift

Shift DC frequency of FFT from beginning to center of spectrum.

Syntax
use stdlib
Y = fftshift(X)

Description
fftshift(X) shifts halves of vector (1-d) or matrix (2-d) X to move
the DC component to the center. It should be used after fft or fft2.

Libraries — stdlib 641

See also
fft, ifftshift

filter2

Digital 2-d filtering of data.

Syntax
use stdlib
Y = filter2(F, X)
Y = filter2(F, X, shape)

Description
filter2(F,X) filters matrix X with kernel F with a 2-d correlation. The
result has the same size as X.

An optional third argument is passed to conv2 to specify another
method to handle the borders.

filter2 and conv2 have three differences: arguments F and X are
permuted, filtering is performed with a correlation instead of a con-
volution (i.e. the kernel is rotated by 180 degrees), and the default
method for handling the borders is ’same’ instead of ’full’.

See also
filter, conv2

hankel

Hankel matrix.

Syntax
use stdlib
X = hankel(c, r)

Description
hankel(c,r) creates a Hankel matrix whose first column contains the
elements of vector c and whose last row contains the elements of
vector r. A Hankel matrix is a matrix whose antidiagonals have the
same value. In case of conflict, the first element of r is ignored. The
default value of r is a zero vector the same length as c.

642 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
use stdlib
hankel(1:3, 3:8)
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8

See also
toeplitz, diag

hist

Histogram.

Syntax
use stdlib
(N, X) = hist(Y)
(N, X) = hist(Y, m)
(N, X) = hist(Y, m, dim)
N = hist(Y, X)
N = hist(Y, X, dim)

Description
hist(Y) gives the number of elements of vector Y in 10 equally-
spaced intervals. A second input argument may be used to specify
the number of intervals. The center of the intervals may be obtained
in a second output argument.

If Y is an array, histograms are computed along the dimension spec-
ified by a third argument or the first non-singleton dimension; the re-
sult N has the same size except along that dimension.

When the second argument is a vector, it specifies the centers of
the intervals.

Example
use stdlib
(N, X) = hist(logspace(0,1), 5)
N =
45 21 14 11 9

X =
1.9 3.7 5.5 7.3 9.1

ifftshift

Shift DC frequency of FFT from center to beginning of spectrum.

Libraries — stdlib 643

Syntax
use stdlib
Y = ifftshift(X)

Description
ifftshift(X) shifts halves of vector (1-d) or matrix (2-d) X to move
the DC component from the center. It should be used before ifft or
ifft2. It reverses the effect of fftshift.

See also
ifft, fftshift

isreal

Test for a real number.

Syntax
use stdlib
b = isreal(x)

Description
isreal(x) is true if x is a real scalar or a matrix whose entries are all
real.

Examples
use stdlib
isreal([2,5])
true

isreal([2,3+2j])
false

isreal(exp(pi*1j))
true

See also
isnumeric, isfloat, isscalar

perms

Array of permutations.

Syntax
use stdlib
M = perms(v)

644 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
perm(v) gives an array whose rows are all the possible permutations
of vector v.

Example
use stdlib
perms(1:3)
3 2 1
3 1 2
2 3 1
1 3 2
2 1 3
1 2 3

See also
sort

polyfit

Polynomial fit.

Syntax
use stdlib
pol = polyfit(x, y, n)

Description
polyfit(x,y,n) calculates the polynomial (given as a vector of de-
scending power coefficients) of order n which best fits the points given
by vectors x and y. The least-square algorithm is used.

Example
use stdlib
pol = polyfit(1:5, [2, 1, 4, 5, 2], 3)
pol =
-0.6667 5.5714 -12.7619 9.8000

polyval(pol, 1:5)
1.9429 1.2286 3.6571 5.2286 1.9429

polyvalm

Value of a polynomial with square matrix argument.

Libraries — stdlib 645

Syntax
use stdlib
Y = polyvalm(pol, X)

Description
polyvalm(pol,X) evaluates the polynomial given by the coefficients
pol (in descending power order) with a square matrix argument.

Example
use stdlib
polyvalm([1,2,8],[2,1;0,1])
16 5
0 11

See also
polyval

primes

List of primes.

Syntax
use stdlib
v = primes(n)

Description
primes(n) gives a row vector which contains the primes up to n.

Example
use stdlib
primes(20)
2 3 5 7 11 13 17 19

sortrows

Sort matrix rows.

Syntax
use stdlib
(S, index) = sortrows(M)
(S, index) = sortrows(M, sel)
(S, index) = sortrows(M, sel, dim)

646 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
sortrows(M) sort the rows of matrix M. The sort order is based on the
first column of M, then on the second one for rows with the same value
in the first column, and so on.

sortrows(M,sel) use the columns specified in sel for comparing
the rows of M. A third argument dim can be used to specify the dimen-
sion of the sort: 1 for sorting the rows, or 2 for sorting the columns.

The second output argument of sortrows gives the new order of
the rows or columns as a vector of indices.

Example
use stdlib
sortrows([3, 1, 2; 2, 2, 1; 2, 1, 2])
2 1 2
2 2 1
3 1 2

See also
sort

subspace

Angle between two subspaces.

Syntax
use stdlib
theta = subspace(A, B)

Description
subspace(A,B) gives the angle between the two subspaces spanned
by the columns of A and B.

Examples
Angle between two vectors in R 2̂:

use stdlib
a = [3; 2];
b = [1; 5];
subspace(a, b)
0.7854

Angle between the vector [1;1;1] and the plane spanned by [2;5;3]
and [7;1;0] in R 3̂:

subspace([1;1;1], [2,7;5,1;3,0])
0.2226

Libraries — stdlib 647

toeplitz

Toeplitz matrix.

Syntax
use stdlib
X = toeplitz(c, r)
X = toeplitz(c)

Description
toeplitz(c,r) creates a Toeplitz matrix whose first column contains
the elements of vector c and whose first row contains the elements of
vector r. A Toeplitz matrix is a matrix whose diagonals have the same
value. In case of conflict, the first element of r is ignored. With one
argument, toeplitz gives a symmetric square matrix.

Example
use stdlib
toeplitz(1:3, 1:5)
1 2 3 4 5
2 1 2 3 4
3 2 1 2 3

See also
hankel, diag

trapz

Numeric integration with trapezoidal approximation.

Syntax
use stdlib
s = trapz(Y)
s = trapz(X, Y)
s = trapz(X, Y, dim)

Description
trapz(Y) calculates an approximation of the integral of a function
given by the samples in Y with unit intervals. The trapezoidal approxi-
mation is used. If Y is an array, integration is performed along the first
non-singleton dimension.

trapz(X,Y) specifies the location of the samples. A third argument
may be used to specify along which dimension the integration is per-
formed.

648 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
use stdlib
trapz([2, 3, 5])
6.5

trapz([1, 2, 5], [2, 3, 5])
14.5

See also
sum, cumtrapz

8.3 stat

stat is a library which adds to LME advanced statistical functions.
The following statement makes available functions defined in stat:

use stat

Functions

bootstrp

Bootstrap estimate.

Syntax
use stat
(stats, samples) = bootstrp(n, fun, D1, ...)

Description
bootstrp(n,fun,D) picks random observations from the rows of ma-
trix (or column vector) D to form n sets which have all the same size
as D; then it applies function fun (a function name or reference or an
inline function) to each set and returns the results in the columns of
stats. Up to three different set of data can be provided.

bootstrp gives an idea of the robustness of the estimate with re-
spect to the choice of the observations.

Example
use stat
D = rand(1000, 1);
bootstrp(5, @std, D)

0.2938
0.2878
0.2793
0.2859
0.2844

Libraries — stat 649

geomean

Geometric mean of a set of values.

Syntax
use stat
m = geomean(A)
m = geomean(A, dim)

Description
geomean(A) gives the geometric mean of the columns of array A or of
the row vector A. The dimension along which geomean proceeds may
be specified with a second argument.

The geometric mean of vector v of length n is defined as (
∏

)
1/n.

Example
use stat
geomean(1:10)
4.5287

mean(1:10)
5.5

exp(mean(log(1:10)))
4.5287

See also
harmmean, mean

harmmean

Harmonic mean of a set of values.

Syntax
use stat
m = harmmean(A)
m = harmmean(A, dim)

Description
harmmean(A) gives the harmonic mean of the columns of array A or of
the row vector A. The dimension along which harmmean proceeds may
be specified with a second argument.

The inverse of the harmonic mean is the arithmetic mean of the
inverse of the observations.

650 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
use stat
harmmean(1:10)
3.4142

mean(1:10)
5.5

See also
geomean, mean

iqr

Interquartile range.

Syntax
use stat
m = iqr(A)
m = iqr(A, dim)

Description
iqr(A) gives the interquartile range of the columns of array A or of
the row vector A. The dimension along which iqr proceeds may be
specified with a second argument.

The interquartile range is the difference between the 75th per-
centile and the 25th percentile.

Example
use stat
iqr(rand(1,1000))
0.5158

See also
trimmean, prctile

mad

Mean absolute deviation.

Syntax
use stat
m = mad(A)
m = mad(A, dim)

Libraries — stat 651

Description
mad(A) gives the mean absolute deviation of the columns of array A
or of the row vector A. The dimension along which mad proceeds may
be specified with a second argument.

The mean absolute deviation is the mean of the absolute value of
the deviation between each observation and the arithmetic mean.

Example
use stat
mad(rand(1,1000))
0.2446

See also
trimmean, mean, iqr

nancorrcoef

Correlation coefficients after discarding NaNs.

Syntax
use stat
S = nancorrcoef(X)
S = nancorrcoef(X1, X2)

Description
nancorrcoef(X) calculates the correlation coefficients of the columns
of the m-by-n matrix X. NaN values are ignored. The result is a square
n-by-n matrix whose diagonal is 1.

nancorrcoef(X1,X2) calculates the correlation coefficients of X1
and X2 and returns a 2-by-2 matrix, ignoring NaN values. It is equiva-
lent to nancorrcoef([X1(:),X2(:)]).

See also
nanmean, nanstd, nancov, corrcoef

nancov

Covariance after discarding NaNs.

Syntax
use stat
M = nancov(data)
M = nancov(data, 0)
M = nancov(data, 1)

652 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
nancov(data) returns the best unbiased estimate m-by-m covariance
matrix of the n-by-m matrix data for a normal distribution. NaN values
are ignored. Each row of data is an observation where n quantities
were measured. nancov(data,0) is the same as nancov(data).

nancov(data,1) returns the m-by-m covariance matrix of the n-by-
m matrix data which contains the whole population; NaN values are
ignored.

See also
nanmean, nanstd, nancorrcoef, cov

nanmean

Mean after discarding NaNs.

Syntax
use stat
y = nanmean(A)
y = nanmean(A, dim)

Description
nanmean(v) returns the arithmetic mean of the elements of vector v.
nanmean(A) returns a row vector whose elements are the means of the
corresponding columns of array A. nanmean(A,dim) returns the mean
of array A along dimension dim; the result is a row vector if dim is 1,
or a column vector if dim is 2. In all cases, NaN values are ignored.

Examples
use stat
nanmean([1,2,nan;nan,6,7])
1 4 7

nanmean([1,2,nan;nan,6,7],2)
1.5
6.5

nanmean([nan,nan])
nan

See also
nanmedian, nanstd, mean

nanmedian

Median after discarding NaNs.

Libraries — stat 653

Syntax
use stat
y = nanmedian(A)
y = nanmedian(A, dim)

Description
nanmedian(v) gives the median of vector v, i.e. the value x such
that half of the elements of v are smaller and half of the elements are
larger. NaN values are ignored.

nanmedian(A) gives a row vector which contains the median of the
columns of A. With a second argument, nanmedian(A,dim) operates
along dimension dim.

See also
nanmean, median

nanstd

Standard deviation after discarding NaNs.

Syntax
use stat
y = nanstd(A)
y = nanstd(A, p)
y = nanstd(A, p, dim)

Description
nanstd(v) returns the standard deviation of vector v with NaN values
ignored, normalized by one less than the number of non-NaN values.
With a second argument, nanstd(v,p) normalizes by one less than
the number of non-NaN values if p is true, or by the number of non-
NaN values if p is false.

nanstd(M) gives a row vector which contains the standard devi-
ation of the columns of M. With a third argument, nanstd(M,p,dim)
operates along dimension dim. In all cases, NaN values are ignored.

Example
use stat
nanstd([1,2,nan;nan,6,7;10,11,12])
6.3640 4.5092 3.5355

See also
nanmedian, nanstd, mean

654 Sysquake Remote ©1999-2016, Calerga Sàrl

nansum

Sum after discarding NaNs.

Syntax
use stat
y = nansum(A)
y = nansum(A, dim)

Description
nansum(v) returns the sum of the elements of vector v. NaN values
are ignored. nansum(A) returns a row vector whose elements are the
sums of the corresponding columns of array A. nansum(A,dim) returns
the sum of array A along dimension dim; the result is a row vector if
dim is 1, or a column vector if dim is 2.

See also
nanmean, sum

pdist

Pairwise distance between observations.

Syntax
use stat
d = pdist(M)
d = pdist(M, metric)
d = pdist(M, metric, p)

Description
pdist calculates the distance between pairs of rows of the observation
matrix M. The result is a column vector which contains the distances
between rows i and j with i<j. It can be resized to a square matrix
with squareform.

By default, the metric used to calculate the distance is the eu-
clidean distance; but it can be specified with a second argument:

’euclid’ euclidean distance
’seuclid’ standardized euclidean distance
’mahal’ Mahalanobis distance
’cityblock’ sum of absolute values
’minkowski’ Minkowski metric with parameter p

The standardized euclidean distance is the euclidean distance after
each column of M has been divided by its standard deviation. The
Minkowski metric is based on the p-norm of vector differences.

Libraries — stat 655

Examples
use stat
pdist((1:3)’)
1 2 1

squareform(pdist((1:3)’))
0 1 2
1 0 1
2 1 0

squareform(pdist([1,2,6; 3,1,7;6,1,2]))
0 2.4495 6.4807
2.4495 0 5.831
6.4807 5.831 0

See also
squareform

prctile

Percentile.

Syntax
use stat
m = prctile(A, prc)
m = prctile(A, prc, dim)

Description
prctile(A,prc) gives the smallest values larger than prc percent
of the elements of each column of array A or of the row vector A.
The dimension along which prctile proceeds may be specified with a
third argument.

Example
prctile(rand(1,1000),90)
0.8966

See also
trimmean, iqr

range

Data range.

656 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use stat
m = range(A)
m = range(A, dim)

Description
range(A) gives the differences between the maximum and minimum
values of the columns of array A or of the row vector A. The dimension
along which range proceeds may be specified with a second argu-
ment.

Example
range(rand(1,100))
0.9602

See also
iqr

squareform

Resize the output of pdist to a square matrix.

Syntax
use stat
D = squareform(d)

Description
squareform(d) resize d, which should be the output of pdist, into a
symmetric square matrix D, so that the distance between observations
i and j is D(i,j).

See also
pdist

trimmean

Trimmed mean of a set of values.

Syntax
use stat
m = trimmean(A, prc)
m = trimmean(A, prc, dim)

Libraries — probdist 657

Description

trimmean(A,prc) gives the arithmetic mean of the columns of array A
or of the row vector A once prc/2 percent of the values have been re-
moved from each end. The dimension along which trimmean proceeds
may be specified with a third argument.

trimmean is less sensitive to outliers than the regular arithmetic
mean.

See also

prctile, geomean, median, mean

zscore

Z score (normalized deviation).

Syntax
use stat
Y = zscore(X)
Y = zscore(X, dim)

Description

zscore(X) normalizes the columns of array X or the row vector X by
subtracting their mean and dividing by their standard deviation. The
dimension along which zscore proceeds may be specified with a sec-
ond argument.

8.4 probdist

probdist is a library which adds to LME classes related to probabil-
ity distributions. They provide an alternative interface to the algo-
rithms in functions pdf, cdf, icdf and random. In addition, they pro-
vide methods to compute their mean, their median, their variance and
their standard deviation when an explicit formula is known.

Probability distribution objects, which bundle both the distribution
type and parameters, should be created with function makedist.

The following statement makes available classes defined in
probdist:

use probdist

658 Sysquake Remote ©1999-2016, Calerga Sàrl

Functions

distribution::cdf

Cumulative distribution function for a distribution.

Syntax
s = cdf(pd, x)

Description
cdf(pd,x) calculates the integral of a probability density function
from -infinity to x. The distribution is specified by the distribution ob-
ject pd, typically created by makedist.

Example
use probdist
pd = makedist(’normal’, mu=1, sigma=0.5);
x = linspace(-1, 3);
p = pdf(pd, x);
c = cdf(pd, x);
plot(x, p, ’-’);
plot(x, c);

See also
distribution::pdf, distribution::icdf, distribution::random,
makedist, cdf

distribution::icdf

Inverse cumulative distribution function for a distribution.

Syntax
x = icdf(pd, p)

Description
icdf(pd,p) calculates the value of x such that cdf(pd,x) is p. The
distribution is specified by the distribution object pd, typically created
by makedist.

icdf is defined for distributions beta, chi2, gamma, lognormal,
normal, student, and uniform.

Libraries — probdist 659

Example
use probdist
pd = makedist(’student’, nu=3);
p = cdf(pd, 4)
p =
0.9860

x = icdf(pd, p)
x =
4.0000

See also
distribution::cdf, distribution::pdf, distribution::random,
makedist, icdf

makedist

Make a distribution object.

Syntax
use probdist
pd = makedist(name, param1=value1, ...)

Description
makedist(name) creates a distribution object with the default param-
eters. Parameters can be specified with named arguments. The result
is an object whose class is a subclass of distribution.

Here is a list of distributions with the default parameter values.

Name Default parameters Class
’beta’ a=1,b=1 betaDistribution
’chi’ nu=1 chiDistribution
’chi2’ nu=1 chi2Distribution
’exp’ mu=1 exponentialDistribution
’logn’ mu=1,sigma=1 lognormalDistribution
’nakagami’ mu=1,omega=1 nakagamiDistribution
’norm’ mu=0,sigma=1 normalDistribution
’rayl’ b=1 rayleighDistribution
’t’ nu=1 studentDistribution
’unif’ Lower=0,Upper=1 uniformDistribution
’weib’ a=1,b=1 weibullDistribution

Example
use probstat
pd = makedist(’chi2’, nu=3)

660 Sysquake Remote ©1999-2016, Calerga Sàrl

pd =
Chi2 distribution

m_th = mean(pd)
m_th =
3

m_data = mean(random(pd, [1, 10000]))
m_data =
3.0027

distribution::mean

Mean of a distribution.

Syntax
m = mean(pd)

Description
mean(pd) gives the arithmetic mean of a distribution.

Example
use probdist
pd = makedist(’normal’, mu=3, sigma=2);
mean(pd)
3

See also
distribution::var, distribution::sdev, distribution::median,
makedist, mean

distribution::median

Median of a distribution.

Syntax
m = median(pd)

Description
median(pd) gives the arithmetic median of a distribution, or NaN if it
cannot be computed.

Libraries — probdist 661

Example
use probdist
pd = makedist(’exp’, mu=2);
median(pd)
3

See also
distribution::var, distribution::sdev, distribution::median,
makedist, median

distribution::pdf

Probability density function of a distribution.

Syntax
s = pdf(pd, x)

Description
pdf(pd,x) gives the probability of a distribution. The distribution is
specified by the distribution object pd, typically created by makedist.

Example
use probdist
pd = makedist(’lognormal’, mu=2, sigma=1.5);
x = logspace(-2,1);
p = pdf(pd, x);
plot(x, p);

See also
distribution::cdf, distribution::icdf, distribution::random,
makedist, pdf

distribution::random

Random generator for a distribution.

Syntax
x = random(pd)
x = random(pd, size)

662 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
random(pd) calculates a pseudo-random number whose distribution
function is specified by the distribution object pd, typically created by
makedist.

Additional input arguments specify the size of the result, either as
a vector (or a single scalar for a square matrix) or as scalar values.
The result is an array of the specified size where each value is an
independent pseudo-random variable. The default size is 1 (scalar).

Example
use probdist
pd = makedist(’exp’);
dataSize = [10, 100];
data = random(pd, dataSize);

See also
distribution::pdf, makedist, random

distribution::std

Standard deviation of a distribution.

Syntax
s = std(pd)

Description
std(pd) gives the standard deviation of a distribution.

Example
use probdist
pd = makedist(’lognormal’, mu=2, sigma=1.5);
std(pd)
66.3080

std(random(pd,[1,100000]))
68.0868

See also
distribution::var, distribution::mean, distribution::median,
makedist, std

distribution::var

Variance of a distribution.

Libraries — polynom 663

Syntax
s2 = var(pd)

Description
var(pd) gives the variance of a distribution.

Example
use probdist
pd = makedist(’uniform’, Lower=2, Upper=10);
var(pd)
5.3333

var(random(pd,[1,100000]))
5.3148

See also
distribution::mean, distribution::sdev,
distribution::median, makedist, var

8.5 polynom

Library polynom implements the constructors and methods of two
classes: polynom for polynomials, and ratfun for rational functions.
Basic arithmetic operators and functions are overloaded to support
expressions with the same syntax as for numbers and matrices.

The following statement makes available functions defined in
polynom:

use polynom

Methods for conversion to MathML are defined in library
polynom_mathml. Both libraries can be loaded with a single
statement:

use polynom, polynom_mathml

Functions

polynom::polynom

Polynom object constructor.

Syntax
use polynom
p = polynom
p = polynom(coef)

664 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
polynom(coef) creates a polynom object initialized with the coeffi-
cients in vector coef, given in descending powers of the variable.
Without argument, polynom returns a polynom object initialized to 0.

The following operators and functions may be used with polynom
arguments, with results analog to the corresponding functions of LME.
Function roots ignores leading zero coefficients.

- minus + plus
ˆ mpower rem
\ mldivide roots
/ mrdivide - uminus
* mtimes + uplus

Examples
use polynom
p = polynom([3,0,1,-4,2])
p =
3x̂ 4+x̂ 2-4x+2

q = 3 * p̂ 2 + 8
q =
27x̂ 8+18x̂ 6-72x̂ 5+39x̂ 4-24x̂ 3+60x̂ 2-48x+20

See also
polynom::disp, polynom::double, polynom::subst,
polynom::diff, polynom::int, polynom::inline, polynom::feval,
ratfun::ratfun

polynom::disp

Display a polynom object.

Syntax
use polynom
disp(p)

Description
disp(p) displays polynomial p. It is also executed implicitly when LME
displays the polynom result of an expression which does not end with
a semicolon.

Example
use polynom
p = polynom([3,0,1,-4,2])
p =
3x̂ 4+x̂ 2-4x+2

Libraries — polynom 665

See also
polynom::polynom, disp

polynom::double

Convert a polynom object to a vector of coefficients.

Syntax
use polynom
coef = double(p)

Description
double(p) converts polynomial p to a row vector of descending-power
coefficients.

Example
use polynom
p = polynom([3,0,1,-4,2]);
double(p)
3 0 1 -4 2

See also
polynom::polynom

polynom::subst

Substitute the variable of a polynom object with another polynomial.

Syntax
use polynom
subst(a, b)

Description
subst(a,b) substitutes the variable of polynom a with polynom b.

Example
use polynom
p = polynom([1,2,3])
p =
x̂ 2+3x+9

q = polynom([2,0])
q =
2x

r = subst(p, q)
r =
4x̂ 2+6x+9

666 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
polynom::polynom, polynom::feval

polynom::diff

Polynom derivative.

Syntax
use polynom
diff(p)

Description
diff(p) differentiates polynomial p.

Example
use polynom
p = polynom([3,0,1,-4,2]);
q = diff(p)
q =
12x̂ 3+2x-4

See also
polynom::polynom, polynom::int, polyder

polynom::int

Polynom integral.

Syntax
use polynom
int(p)

Description
int(p) integrates polynomial p.

Example
use polynom
p = polynom([3,0,1,-4,2]);
q = int(p)
q =
0.6x̂ 5+0.3333x̂ 3-2x̂ 2+2x

Libraries — polynom 667

See also
polynom::polynom, polynom::diff, polyint

polynom::inline

Conversion from polynom object to inline function.

Syntax
use polynom
fun = inline(p)

Description
inline(p) converts polynomial p to an inline function which can then
be used with functions such as feval and ode45.

Example
use polynom
p = polynom([3,0,1,-4,2]);
fun = inline(p)
fun =
<inline function>

dumpvar(’fun’, fun);
fun = inline(’function y=f(x);y=polyval([3,0,1,-4,2],x);’);

See also
polynom::polynom, polynom::feval, ode45

polynom::feval

Evaluate a polynom object.

Syntax
use polynom
y = feval(p, x)

Description
feval(p,x) evaluates polynomial p for the value of x. If x is a vector
or a matrix, the evaluation is performed separately on each element
and the result has the same size as x.

668 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
use polynom
p = polynom([3,0,1,-4,2]);
y = feval(p, 1:5)
y =
2 46 242 770 1882

See also
polynom::polynom, polynom::inline, feval

polynom::mathml

Conversion to MathML.

Syntax
use polynom, polynom_mathml
str = mathml(p)
str = mathml(p, false)

Description
mathml(p) converts its argument p to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a last
input argument equal to the logical value false can be specified to
suppress <math>.

Example
use polynom, polynom_mathml
p = polynom([3,0,1,-4,2]);
m = mathml(p);
math(0, 0, m);

See also
mathmlpoly, mathml

ratfun::ratfun

Ratfun object constructor.

Libraries — polynom 669

Syntax
use polynom
r = ratfun
r = ratfun(coefnum)
r = ratfun(coefnum, coefden)

Description
ratfun(coefnum,coefden) creates a ratfun object initialized with the
coefficients in vectors coefnum and coefden, given in descending pow-
ers of the variable. Without argument, ratfun returns a ratfun object
initialized to 0. If omitted, coefden defaults to 1.

The following operators and functions may be used with ratfun ar-
guments, with results analog to the corresponding functions of LME.

inv * mtimes
- minus + plus
\ mldivide - uminus
ˆ mpower + uplus
/ mrdivide

Example
use polynom
r = ratfun([3,0,1,-4,2], [2,5,0,1])
r =
(3x̂ 4+x̂ 2-4x+2)/(2x̂ 3+5x̂ 2+1)

See also
ratfun::disp, ratfun::inline, ratfun::feval, polynom::polynom

ratfun::disp

Display a ratfun object.

Syntax
use polynom
disp(r)

Description
disp(r) displays rational function r. It is also executed implicitly when
LME displays the ratfun result of an expression which does not end
with a semicolon.

See also
ratfun::ratfun, disp

670 Sysquake Remote ©1999-2016, Calerga Sàrl

ratfun::num

Get the numerator of a ratfun as a vector of coefficients.

Syntax
use polynom
coef = num(r)

Description
num(r) gets the numerator of r as a row vector of descending-power
coefficients.

See also
ratfun::den, ratfun::ratfun

ratfun::den

Get the denominator of a ratfun as a vector of coefficients.

Syntax
use polynom
coef = den(a)

Description
den(a) gets the denominator of a as a row vector of descending-power
coefficients.

See also
ratfun::num, ratfun::ratfun

ratfun::diff

Ratfun derivative.

Syntax
use polynom
diff(r)

Description
diff(r) differentiates ratfun r.

Libraries — polynom 671

Example
use polynom
r = ratfun([1,3,0,1],[2,5]);
q = diff(r)
q =
(4x̂ 3+21x̂ 2+30x-2)/(4x̂ 2+20x+25)

See also
ratfun::ratfun

ratfun::inline

Conversion from ratfun to inline function.

Syntax
use polynom
fun = inline(r)

Description
inline(r) converts ratfun r to an inline function which can then be
used with functions such as feval and ode45.

See also
ratfun::ratfun, ratfun::feval, ode45

ratfun::feval

Evaluate a ratfun object.

Syntax
use polynom
y = feval(r, x)

Description
feval(r,x) evaluates ratfun r for the value of x. If x is a vector or a
matrix, the evaluation is performed separately on each element and
the result has the same size as x.

Example
use polynom
r = ratfun([1,3,0,1],[2,5]);
y = feval(r, 1:5)
y =
0.7143 2.3333 5.0000 8.6923 13.4000

672 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
ratfun::ratfun, ratfun::inline, feval

ratfun::mathml

Conversion to MathML.

Syntax
use polynom, polynom_mathml
str = mathml(r)
str = mathml(r, false)

Description
mathml(r) converts its argument r to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a last
input argument equal to the logical value false can be specified to
suppress <math>.

Example
use polynom, polynom_mathml
r = ratfun([1,3,0,1],[2,5]);
m = mathml(r);
math(0, 0, m);

See also
mathml

8.6 ratio

Library ratio implements the constructors and methods of class
ratio for rational numbers. It is based on long integers, so that the
precision is limited only by available memory. Basic arithmetic
operators and functions are overloaded to support expressions with
the same syntax as for numbers.

The following statement makes available functions defined in
ratio:

use ratio

Libraries — ratio 673

Functions

ratio::ratio

Ratio object constructor.

Syntax
use ratio
r = ratio
r = ratio(n)
r = ratio(num, den)
r = ratio(r)

Description
ratio(num, den) creates a rational fraction object whose value is
num/den. Arguments num and den may be double integer numbers
or longint. Common factors are canceled out. With one numeric input
argument, ratio(n) creates a rational fraction whose denominator is
1. Without input argument, ratio creates a rational number whose
value is 0.

With one input argument which is already a ratio object, ratio
returns it without change.

The following operators and functions may be used with ratio ob-
jects, with results analog to the corresponding functions of LME.

== eq \ mldivide
>= ge ˆ mpower
> gt / mrdivide

inv * mtimes
<= le =̃ ne
< lt + plus

max - uminus
min + uplus

- minus

Examples
use ratio
r = ratio(2, 3)
r =
2/3

q = 5 * r - 1
q =
7/3

See also
ratio::disp, ratio::double, ratio::char

674 Sysquake Remote ©1999-2016, Calerga Sàrl

ratio::char

Display a ratio object.

Syntax
use ratio
char(r)

Description
char(r) converts ratio r to a character string.

See also
ratio::ratio, ratio::disp, char

ratio::disp

Display a ratio object.

Syntax
use ratio
disp(r)

Description
disp(r) displays ratio r with the same format as char. It is also ex-
ecuted implicitly when LME displays the ratio result of an expression
which does not end with a semicolon.

See also
ratio::ratio, ratio::char, disp

ratio::double

Convert a ratio object to a floating-point number.

Syntax
use ratio
x = double(r)

Description
double(r) converts ratio r to a floating-point number of class double.

Libraries — bitfield 675

Example
use ratio
r = ratio(2, 3);
double(r)
0.6666

See also
ratio::ratio

8.7 bitfield

Library bitfield implements the constructor and methods of class
bitfield for bit fields (binary numbers). Basic arithmetic operators
and functions are overloaded to support expressions with the same
syntax as for numbers and matrices. Contrary to integer numbers,
bitfield objects have a length (between 1 and 32) and are displayed in
binary.

The following statement makes available functions defined in
bitfield:

use bitfield

Functions

bitfield::beginning

First bit position in a bitfield.

Syntax
use bitfield
a(...beginning...)

Description
In the index expression of a bitfield, beginning is the position of the
least-significant bit, i.e. 0.

See also
bitfield::bitfield, bitfield::end

bitfield::bitfield

Bitfield object constructor.

676 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use bitfield
a = bitfield
a = bitfield(n)
a = bitfield(n, wordlength)

Description
bitfield(n,wordlength) creates a bitfield object initialized with the
wordlength least significant bits of the nonnegative integer number
n. The default value of wordlength is 32 if n is a double, an int32 or
a uint32 number; 16 is n is an int16 or uint16 number; or 8 if n is an
int8 or uint8 number. Without argument, bitfield gives a bit field of
32 bits 0. Like any integer number in LME, n may be written in base 2,
8, 10, or 16: 0b1100, 014, 12, and 0xc all represent the same number.

The following operators and functions may be used with bitfield
arguments, with results analog to the corresponding functions of LME.
Logical functions operate bitwise.

& and ˜ not
== eq | or
- minus + plus
\ mldivide - uminus
/ mrdivide + uplus
* mtimes xor
=̃ ne

Indexes into bit fields are non-negative integers: 0 represents the
least-significant bit, and wordlength-1 the most-significant bit. Unlike
arrays, bits are not selected with logical arrays, but with other bit fields
where ones represent the bits to be selected; for example a(0b1011)
selects bits 0, 1 and 3. This is consistent with the way bitfield::find
is defined.

Examples
use bitfield
a = bitfield(123, 16)
a =
0b0000000001111011

b = ã
b =
0b1111111110000100

b = a * 5
b =
0b0000001001100111

See also
bitfield::disp, bitfield::double

Libraries — bitfield 677

bitfield::disp

Display a bitfield object.

Syntax
use bitfield
disp(a)

Description
disp(a) displays bitfield a. It is also executed implicitly when LME
displays the bitfield result of an expression which does not end with a
semicolon.

See also
bitfield::bitfield, disp

bitfield::double

Convert a bitfield object to a double number.

Syntax
use bitfield
n = double(a)

Description
double(a) converts bitfield a to double number.

Example
use bitfield
a = bitfield(123, 16);
double(a)
123

See also
bitfield::bitfield

bitfield::end

Last bit position in a bitfield.

Syntax
use bitfield
a(...end...)

678 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
In the index expression of a bitfield, end is the position of the most-
significant bit, i.e. 1 less than the word length.

See also
bitfield::bitfield, bitfield::beginning

bitfield::find

Find the ones in a bitfield.

Syntax
use bitfield
ix = find(a)

Description
find(a) finds the bits equal to 1 in bitfield a. The result is a vector of
bit positions in ascending order; the least-significant bit is number 0.

Example
use bitfield
a = bitfield(123, 16)
a =
0b0000000001111011

ix = find(a)
ix =

0 1 3 4 5 6

See also
bitfield::bitfield, find

bitfield::int8 bitfield::int16 bitfield::int32

Convert a bitfield object to a signed integer number, with sign exten-
sion.

Syntax
use bitfield
n = int8(a)
n = int16(a)
n = int32(a)

Libraries — bitfield 679

Description
int8(a), int16(a), and int32(a) convert bitfield a to an int8, int16,
or int32 number respectively. If a has less bits than the target integer
and the most significant bit of a is 1, sign extension is performed;
i.e. the most significant bits of the result are set to 1, so that it is
negative. If a has more bits than the target integer, most significant
bits are ignored.

Example
use bitfield
a = bitfield(9, 4);
a =
0x1001

i = int8(a)
i =
210

b = bitfield(i)
b =
0b11111001

See also
uint8, uint16, uint32, bitfield::int8, bitfield::int16,
bitfield::int32, bitfield::double, bitfield::bitfield

bitfield::length

Word length of a bitfield.

Syntax
use bitfield
wordlength = length(a)

Description
length(a) gives the number of bits of bitfield a.

Example
use bitfield
a = bitfield(123, 16);
length(a)
16

See also
bitfield::bitfield, length

680 Sysquake Remote ©1999-2016, Calerga Sàrl

bitfield::sign

Get the sign of a bitfield.

Syntax
use bitfield
s = sign(a)

Description
sign(a) gets the sign of bitfield a. The result is -1 if the
most-significant bit of a is 1, 0 if all bits of a are 0, or 1 otherwise.

Example
use bitfield
a = bitfield(5, 3)
a =
0b101

sign(a)
-1

See also
bitfield::bitfield, sign

bitfield::uint8 bitfield::uint16 bitfield::uint32

Convert a bitfield object to an unsigned integer number.

Syntax
use bitfield
n = uint8(a)
n = uint16(a)
n = uint32(a)

Description
uint8(a), uint16(a), and uint32(a) convert bitfield a to a uint8,
uint16, or uint32 number respectively. If a has more bits than the
target integer, most significant bits are ignored.

Example
use bitfield
a = bitfield(1234, 16);
uint8(a)
210

Libraries — filter 681

See also
uint8, uint16, uint32, bitfield::int8, bitfield::int16,
bitfield::int32, bitfield::double, bitfield::bitfield

8.8 filter

filter is a library which adds to LME functions for designing analog
(continuous-time) and digital (discrete-time) linear filters.

The following statement makes available functions defined in
filter:

use filter

This library provides three kinds of functions:

– besselap, buttap, cheb1ap, cheb2ap, and ellipap, which com-
pute the zeros, poles and gain of the prototype of analog low-pass
filter with a cutoff frequency of 1 rad/s. They correspond respec-
tively to Bessel, Butterworth, Chebyshev type 1, Chebyshev type
2, and elliptic filters.

– besself, butter, cheby1, cheby2, and ellip, which provide a
higher-level interface to design filters of these different types.
In addition to the filter parameters (degree, bandpass and band-
stop ripples), one can specify the kind of filter (lowpass, highpass,
bandpass or bandstop) and the cutoff frequency or frequencies.
The result can be an analog or a digital filter, given as a rational
transfer function or as zeros, poles and gain.

– lp2lp, lp2hp, lp2bp, and lp2bs, which convert analog lowpass
filters respectively to lowpass, highpass, bandpass, and bandstop
with specified cutoff frequency or frequencies.

Transfer functions are expressed as the coefficient vectors of their nu-
merator num and denominator den in decreasing powers of s (Laplace
transform for analog filters) or z (z transform for digital filters); or as
the zeros z, poles p, and gain k.

Functions

besselap

Bessel analog filter prototype.

682 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use filter
(z, p, k) = besselap(n)

Description
besselap(n) calculates the zeros, the poles, and the gain of a Bessel
analog filter of degree n with a cutoff angular frequency of 1 rad/s.

See also
besself, buttap, cheb1ap, cheb2ap, ellipap

besself

Bessel filter.

Syntax
use filter
(z, p, k) = besself(n, w0)
(num, den) = besself(n, w0)
(...) = besself(n, [wl, wh])
(...) = besself(n, w0, ’high’)
(...) = besself(n, [wl, wh], ’stop’)
(...) = besself(..., ’s’)

Description
besself calculates a Bessel filter. The result is given as zeros, poles
and gain if there are three output arguments, or as numerator and
denominator coefficient vectors if there are two output arguments.

besself(n,w0), where w0 is a scalar, gives a digital lowpass filter
of order n with a cutoff frequency of w0 relatively to half the sampling
frequency.

besself(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a digital bandpass filter of order 2*n with pass-
band between wl and wh relatively to half the sampling frequency.

besself(n,w0,’high’) gives a digital highpass filter of order n
with a cutoff frequency of w0 relatively to half the sampling frequency.

besself(n,[wl,wh],’stop’), where the second input argument
is a vector of two numbers, gives a digital bandstop filter of order
2*n with stopband between wl and wh relatively to half the sampling
frequency.

With an additional input argument which is the string ’s’, besself
gives an analog Bessel filter. Frequencies are given in rad/s.

Libraries — filter 683

See also
besselap, butter, cheby1, cheby2, ellip

bilinear

Analog-to-digital conversion with bilinear transformation.

Syntax
use filter
(zd, pd, kd) = bilinear(zc, pc, kc, fs)
(numd, dend) = bilinear(numc, denc, fs)

Description
bilinear(zc,pc,kc,fs) converts the analog (continuous-time)
transfer function given by its zeros zc, poles pc, and gain kc
to a digital (discrete-time) transfer function given by its zeros,
poles, and gain in the domain of the forward-shift operator q. The
sampling frequency is fs. Conversion is performed with the bilinear
transormation zd = (1 + zc/2ƒs)/(1 − zc/2ƒs). If the analog transfer
function has less zeros than poles, additional digital zeros are added
at -1 to avoid a delay.

With three input arguments, bilinear(numc,denc,fs) uses the
coefficients of the numerators and denominators instead of their ze-
ros, poles and gain.

buttap

Butterworth analog filter prototype.

Syntax
use filter
(z, p, k) = buttap(n)

Description
buttap(n) calculates the zeros, the poles, and the gain of a Butter-
worth analog filter of degree n with a cutoff angular frequency of 1
rad/s.

See also
butter, besselap, cheb1ap, cheb2ap, ellipap

684 Sysquake Remote ©1999-2016, Calerga Sàrl

butter

Butterworth filter.

Syntax
use filter
(z, p, k) = butter(n, w0)
(num, den) = butter(n, w0)
(...) = butter(n, [wl, wh])
(...) = butter(n, w0, ’high’)
(...) = butter(n, [wl, wh], ’stop’)
(...) = butter(..., ’s’)

Description
butter calculates a Butterworth filter. The result is given as zeros,
poles and gain if there are three output arguments, or as numera-
tor and denominator coefficient vectors if there are two output argu-
ments.

butter(n,w0), where w0 is a scalar, gives a nth-order digital low-
pass filter with a cutoff frequency of w0 relatively to half the sampling
frequency.

butter(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a 2nth-order digital bandpass filter with pass-
band between wl and wh relatively to half the sampling frequency.

butter(n,w0,’high’) gives a nth-order digital highpass filter with
a cutoff frequency of w0 relatively to half the sampling frequency.

butter(n,[wl,wh],’stop’), where the second input argument is
a vector of two numbers, gives a 2nth-order digital bandstop filter with
stopband between wl and wh relatively to half the sampling frequency.

With an additional input argument which is the string ’s’, butter
gives an analog Butterworth filter. Frequencies are given in rad/s.

See also
buttap, besself, cheby1, cheby2, ellip

cheb1ap

Chebyshev type 1 analog filter prototype.

Syntax
use filter
(z, p, k) = cheb1ap(n, rp)

Libraries — filter 685

Description

cheb1ap(n,rp) calculates the zeros, the poles, and the gain of a
Chebyshev type 1 analog filter of degree n with a cutoff angular fre-
quency of 1 rad/s. Ripples in the passband have a peak-to-peak mag-
nitude of rp dB, i.e. the peak-to-peak ratio is 10̂ (rp/20).

See also

cheby1, cheb2ap, ellipap, besselap, buttap

cheb2ap

Chebyshev type 2 analog filter prototype.

Syntax
use filter
(z, p, k) = cheb2ap(n, rs)

Description

cheb2ap(n,rs) calculates the zeros, the poles, and the gain of a
Chebyshev type 2 analog filter of degree n with a cutoff angular fre-
quency of 1 rad/s. Ripples in the stopband have a peak-to-peak mag-
nitude of rs dB, i.e. the peak-to-peak ratio is 10̂ (rs/20).

See also

cheby1, cheb1ap, ellipap, besselap, buttap

cheby1

Chebyshev type 1 filter.

Syntax
use filter
(z, p, k) = cheby1(n, rp, w0)
(num, den) = cheby1(n, rp, w0)
(...) = cheby1(n, rp, [wl, wh])
(...) = cheby1(n, rp, w0, ’high’)
(...) = cheby1(n, rp, [wl, wh], ’stop’)
(...) = cheby1(..., ’s’)

686 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
cheby1 calculates a Chebyshev type 1 filter. The result is given as
zeros, poles and gain if there are three output arguments, or as nu-
merator and denominator coefficient vectors if there are two output
arguments.

cheby1(n,rp,w0), where w0 is a scalar, gives a nth-order digital
lowpass filter with a cutoff frequency of w0 relatively to half the sam-
pling frequency. Ripples in the passband have a peak-to-peak magni-
tude of rp dB, i.e. the peak-to-peak ratio is 10̂ (rp/20).

cheby1(n,rp,[wl,wh]), where the second input argument is a
vector of two numbers, gives a 2nth-order digital bandpass filter with
passband between wl and wh relatively to half the sampling
frequency.

cheby1(n,rp,w0,’high’) gives a nth-order digital highpass filter
with a cutoff frequency of w0 relatively to half the sampling frequency.

cheby1(n,rp,[wl,wh],’stop’), where the second input
argument is a vector of two numbers, gives a 2nth-order digital
bandstop filter with stopband between wl and wh relatively to half the
sampling frequency.

With an additional input argument which is the string ’s’, cheby1
gives an analog Chebyshev type 1 filter. Frequencies are given in
rad/s.

See also
cheb1ap, besself, butter, cheby2, ellip

cheby2

Chebyshev type 2 filter.

Syntax
use filter
(z, p, k) = cheby2(n, rs, w0)
(num, den) = cheby2(n, rs, w0)
(...) = cheby2(n, rs, [wl, wh])
(...) = cheby2(n, rs, w0, ’high’)
(...) = cheby2(n, rs, [wl, wh], ’stop’)
(...) = cheby2(..., ’s’)

Description
cheby2 calculates a Chebyshev type 2 filter. The result is given as
zeros, poles and gain if there are three output arguments, or as nu-
merator and denominator coefficient vectors if there are two output
arguments.

Libraries — filter 687

cheby2(n,rs,w0), where w0 is a scalar, gives a nth-order digital
lowpass filter with a cutoff frequency of w0 relatively to half the sam-
pling frequency. Ripples in the stopband have a peak-to-peak magni-
tude of rs dB, i.e. the peak-to-peak ratio is 10̂ (rs/20).

cheby2(n,rs,[wl,wh]), where the second input argument is a
vector of two numbers, gives a 2nth-order digital bandpass filter with
passband between wl and wh relatively to half the sampling
frequency.

cheby2(n,rs,w0,’high’) gives a nth-order digital highpass filter
with a cutoff frequency of w0 relatively to half the sampling frequency.

cheby2(n,rs,[wl,wh],’stop’), where the second input
argument is a vector of two numbers, gives a 2nth-order digital
bandstop filter with stopband between wl and wh relatively to half the
sampling frequency.

With an additional input argument which is the string ’s’, cheby2
gives an analog Chebyshev type 2 filter. Frequencies are given in
rad/s.

See also
cheb2ap, besself, butter, cheby1, ellip

ellip

Elliptic filter.

Syntax
use filter
(z, p, k) = ellip(n, rp, rs, w0)
(num, den) = ellip(n, rp, rs, w0)
(...) = ellip(n, rp, rs, [wl, wh])
(...) = ellip(n, rp, rs, w0, ’high’)
(...) = ellip(n, rp, rs, [wl, wh], ’stop’)
(...) = ellip(..., ’s’)

Description
ellip calculates a elliptic filter, or Cauer filter. The result is given
as zeros, poles and gain if there are three output arguments, or as
numerator and denominator coefficient vectors if there are two output
arguments.

ellip(n,rp,rs,w0), where w0 is a scalar, gives a nth-order digital
lowpass filter with a cutoff frequency of w0 relatively to half the sam-
pling frequency. Ripples have a peak-to-peak magnitude of rp dB in
the passband and of rs dB in the stopband (peak-to-peak ratios are
respectively 10̂ (rp/20) and 10̂ (rs/20)).

688 Sysquake Remote ©1999-2016, Calerga Sàrl

ellip(n,rp,rs,[wl,wh]), where the second input argument is a
vector of two numbers, gives a 2nth-order digital bandpass filter with
passband between wl and wh relatively to half the sampling frequency.

ellip(n,rp,rs,w0,’high’) gives a nth-order digital highpass fil-
ter with a cutoff frequency of w0 relatively to half the sampling fre-
quency.

ellip(n,rp,rs,[wl,wh],’stop’), where the second input argu-
ment is a vector of two numbers, gives a 2nth-order digital bandstop
filter with stopband between wl and wh relatively to half the sampling
frequency.

With an additional input argument which is the string ’s’, ellip
gives an analog elliptic filter. Frequencies are given in rad/s.

See also
ellipap, besself, butter, cheby1, cheby2

ellipap

Elliptic analog filter prototype.

Syntax
use filter
(z, p, k) = ellipap(n, rp, rs)

Description
ellipap(n,rp,rs) calculates the zeros, the poles, and the gain of an
elliptic analog filter of degree n with a cutoff angular frequency of 1
rad/s. Ripples have a peak-to-peak magnitude of rp dB in the pass-
band and of rs dB in the stopband (peak-to-peak ratios are respec-
tively 10̂ (rp/20) and 10̂ (rs/20)).

See also
ellip, cheb1ap, cheb1ap, besselap, buttap

lp2bp

Lowpass prototype to bandpass filter conversion.

Syntax
use filter
(z, p, k) = lp2bp(z0, p0, k0, wc, ww)
(num, den) = lp2bp(num0, den0, wc, ww)

Libraries — filter 689

Description
lp2bp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a bandpass analog filter with the specified center angular
frequency w0 and bandwidth ww. lp2bp(z0,p0,k0,wc,ww) converts
a filter given by its zeros, poles, and gain; lp2bp(num0,den0,wc,ww)
converts a filter given by its numerator and denominator coefficients
in decreasing powers of s.

The new filter F(s) is

F(s) = F0

�

s2 + ω2
c
− ω2

/4

ωs

�

where F0(s) is the filter prototype. The filter order is doubled.

See also
lp2lp, lp2hp, lp2bs

lp2bs

Lowpass prototype to bandstop filter conversion.

Syntax
use filter
(z, p, k) = lp2bs(z0, p0, k0, wc, ww)
(num, den) = lp2bs(num0, den0, wc, ww)

Description
lp2bs convert a lowpass analog filter prototype (with unit angular fre-
quency) to a bandstop analog filter with the specified center angular
frequency w0 and bandwidth ww. lp2bs(z0,p0,k0,wc,ww) converts
a filter given by its zeros, poles, and gain; lp2bs(num0,den0,wc,ww)
converts a filter given by its numerator and denominator coefficients
in decreasing powers of s.

The new filter F(s) is

F(s) = F0

�

ωs

s2 + ω2
c
− ω2

/4

�

where F0(s) is the filter prototype. The filter order is doubled.

See also
lp2lp, lp2hp, lp2bp

690 Sysquake Remote ©1999-2016, Calerga Sàrl

lp2hp

Lowpass prototype to highpass filter conversion.

Syntax
use filter
(z, p, k) = lp2hp(z0, p0, k0, w0)
(num, den) = lp2hp(num0, den0, w0)

Description
lp2hp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a highpass analog filter with the specified cutoff angular
frequency w0. lp2hp(z0,p0,k0,w0) converts a filter given by its ze-
ros, poles, and gain; lp2hp(num0,den0,w0) converts a filter given by
its numerator and denominator coefficients in decreasing powers of s.

The new filter F(s) is

F(s) = F0(
1

ω0s
)

where F0(s) is the filter prototype.

See also
lp2lp, lp2bp, lp2bs

lp2lp

Lowpass prototype to lowpass filter conversion.

Syntax
use filter
(z, p, k) = lp2lp(z0, p0, k0, w0)
(num, den) = lp2lp(num0, den0, w0)

Description
lp2lp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a lowpass analog filter with the specified cutoff angular
frequency w0. lp2lp(z0,p0,k0,w0) converts a filter given by its ze-
ros, poles, and gain; lp2lp(num0,den0,w0) converts a filter given by
its numerator and denominator coefficients in decreasing powers of s.

The new filter F(s) is

F(s) = F0

�

s

ω0

�

where F0(s) is the filter prototype.

Libraries — lti 691

See also
lp2hp, lp2bp, lp2bs

8.9 lti

Library lti defines methods related to objects which represent linear
time-invariant dynamical systems. LTI systems may be used to model
many different systems: electro-mechanical devices, robots, chemical
processes, filters, etc. LTI systems map one or more inputs u to one
or more outputs y. The mapping is defined as a state-space model
or as a matrix of transfer functions, either in continuous time or in
discrete time. Methods are provided to create, combine, and analyze
LTI objects.

Graphical methods are based on the corresponding graphical func-
tions; the numerator and denominator coefficient vectors or the state-
space matrices are replaced with an LTI object. They accept the same
optional arguments, such as a character string for the style.

The following statement makes available functions defined in lti:

use lti

Methods for conversion to MathML are defined in library lti_mathml.
Both libraries can be loaded with a single statement:

use lti, lti_mathml

Class overview

The LTI library defines six classes. The three central ones correspond
to the main model structures used for linear time-invariant systems in
automatic control: ss for state-space models, tf for rational transfer
functions given by the coefficients of the numerator and denominator
polynomials, and zpk for rational transfer functions given by their ze-
ros, poles and gain. State-space representation is restricted to causal
systems, while transfer functions can be non-causal. Three additional
classes are more specialized: frd (frequency response data) for sys-
tems described by a discrete set of frequency/complex response pairs,
and pid or pidstd for PID controllers.

LTI classes share many properties and methods. They can repre-
sent systems with single or multiple inputs and/or outputs. Inputs,
outputs and internal states are continuous in time (continuous-time
systems) or defined at a fixed sampling frequency (discrete-time sys-
tems).

The variable of the Laplace transform can be ’s’ or ’p’. The vari-
able of the z transform can be ’z’ or ’q’. By multiplying the numer-
ator and the denominator of a rational transfer function by a suitable

692 Sysquake Remote ©1999-2016, Calerga Sàrl

power of q̂ -1 (or ẑ -1), polynomials in q̂ -1 can be obtained, where
q̂ -1 is the delay operator; this yields directly a recurrence relation.

Conversion

Conversion between ss, tf and zpk can be done simply by calling
the target constructor. The only restriction is that systems to be con-
verted to state-space models must be causal. For instance, a transfer
function given by its zeros, poles and gain can be converted to a state-
space model as follows:

use lti;
P = zpk([1], [-3+1j, -3-1j], 2)
P =
continuous-time zero-pole-gain transfer function
2(s-1)/(s-(-3+1j))(s-(-3-1j))

S = ss(P)
S =
continuous-time LTI state-space system
A =

-6 -10
1 0
B =
1
0
C =
2 -2
D =
0

Conversion from pid or pidstd objects is performed the same way.
Conversion to pid or pidstd objects is possible only if the system to
be converted has the structure of a P, PI, PD, or PID controller, with or
without filter on the derivative term.

Conversion to an frd object requires an array of frequency points
where the frequency response is evaluated. Conversion of frd objects
to other LTI objects is not possible.

Conversion between continuous-time and discrete-time objects of
the same class is performed with c2d and d2c.

Building large systems

Simple systems can be combined to create larger ones. All systems
can be seen as matrices mapping inputs to outputs via a matrix prod-
uct. Larger systems can be created by matrix concatenation, addition
or multiplication. More specialized connections can be obtained with
methods connect and feedback.

Libraries — lti 693

Mixing objects of different classes is possible for all classes except
for frd (where a frequency array must be provided explicitly, which
can only be done with a call of the frd constructor). Continuous-time
objects cannot be connected with discrete-time objects, and discrete-
time objects must have the same sampling period.

Functions

frd::frd

LTI frequency response data constructor.

Syntax
use lti
a = frd
a = frd(resp, freq)
a = frd(resp, freq, Ts)

Description
frd(response,frequency,Ts) creates an LTI object which represents
a discrete set of frequency response data. Argument response is an
array of complex frequency responses corresping to frequency array
freq.

A single-input single-output (SISO) PID controller has scalar param-
eters. If the parameters are matrices, they must all have the same
size (scalar values are replicated as required), and the resulting con-
troller has as many inputs as parameters have columns and as many
outputs as parameters have rows; mapping from each input to each
output is and independent SISO PID controller.

Examples
Simple continuous-time frd object:

use lti
freq = 0:100;
resp = 3 ./ (1 + 0.1 * freq * 1j) + 0.1 * randn(size(freq));
r = frd(resp, freq)
r =
continuous-time frequency response, units=rad/s
1 input, 1 output
101 frequencies

Conversion from a transfer function object:

694 Sysquake Remote ©1999-2016, Calerga Sàrl

freq = 0:100;
G = tf(1, [1, 2, 3, 4]);
r = frd(G, freq)
r =
continuous-time frequency response, units=rad/s
1 input, 1 output
101 frequencies

See also
frd::frdata

pid::pid

LTI PID controller constructor.

Syntax
use lti
a = pid
a = pid(Kp, Ki, Kd, Tf)
a = pid(Kp, Ki, Kd, Tf, Ts)
a = pid(Kp, Ki, Kd, Tf, Ts, var)
a = pid(..., IFormula=f1, DFormula=f2)

Description
pid(Kp, Ki, Kd, Tf) creates an LTI object which represents the
continuous-time PID controller Kp + K/s+ Kds/(Tƒ s+ 1), where s is the
variable of the Laplace transform. Kp is the proportional gain, Ki is
the integral gain, Kd is the derivative gain, and Tf is the time
constant of the first-order filter of the derivative term. Missing Ki, Kd
or Tf default to 0; without any input argument, Kp defaults to 1. If
Tf=0 and Kd!=0, the derivative term is not filtered and the controller
is not causal.

A single-input single-output (SISO) PID controller has scalar param-
eters. If the parameters are matrices, they must all have the same
size (scalar values are replicated as required), and the resulting con-
troller has as many inputs as parameters have columns and as many
outputs as parameters have rows; mapping from each input to each
output is an independent SISO PID controller.

pid(Kp, Ki, Kd, Tf, Ts) creates an LTI object which represents
the discrete-time PID controller Kp+K(z)+Kd/(Tƒ + d(z)), where (z)
is the integration formula used for the integral term, d(z) is the inte-
gration formula used for the derivative term, and z is the variable of
the z transform. The formulae can be specified by named arguments
IFormula and DFormula, strings with the following values:

Libraries — lti 695

Name Value
’ForwardEuler’ Ts/(z − 1)
’BackwardEuler’ Tsz/(z − 1)
’Trapezoidal’ Ts/2 (z + 1)/(z − 1)

The default formula for both the integral and the derivative terms
is ’ForwardEuler’.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’
for forward time shift, ’ẑ -1’ or ’q̂ -1’ for backward time shift).

For PID controllers based on the standard parameters Kp, Ti and
Td, where Ki=Kp/Ti and Kd=Kp*Td, pidstd objects should be used
instead.

Examples
Simple continuous-time PID controller:

use lti
C = pid(5,2,1)
C =
continuous-time PID controller
Kp + Ki/s + Kd s/(Tf s + 1)
Kp = 5 Ki = 2 Kd = 1 Tf = 0

Discrete-time PD controller where the derivative term, filtered with
a time constant of 20ms, is approximated with the Backward Euler
formula, with a sampling period of 1ms. The controller is displayed
with the backward-shift operator q̂ -1.

C = pid(5,0,1,20e-3,1e-3,’q̂ -1’,DFormula=’BackwardEuler’)
C =
discrete-time PD controller, Ts=1e-3
Kp + Kd/(Tf + Id(q̂ -1))
Id(q̂ -1) = Ts/(1-q̂ -1) (BackwardEuler)
Kp = 5 Kd = 1 Tf = 2e-2

Conversion of a first-order continuous-time transfer function with pole
at 0 (integrator effect) to a continuous-time PI controller:

G = tf([1, 2], [1, 0])
G =
continuous-time transfer function
(s+2)/s

C = pid(G)
C =
continuous-time PI controller
Kp + Ki/s
Kp = 1 Ki = 2

696 Sysquake Remote ©1999-2016, Calerga Sàrl

Conversion of a discrete-time PID controller with the Backward Eu-
ler formula for the integral term and the Trapezoidal formula for the
derivative term to a transfer function, and back to a PID controller:

C1 = pid(5, 2, 3, 0.1, 0.01,
IFormula=’BackwardEuler’, DFormula=’Trapezoidal’)

C1 =
discrete-time PID controller, Ts=1e-2
Kp + Ki Ii(z) + Kd/(Tf + Id(z))
Ii(z) = Ts z/(z-1) (BackwardEuler)
Id(z) = Ts/2 (z+1)/(z-1) (Trapezoidal)

Kp = 5 Ki = 2 Kd = 3 Tf = 0.1
G = tf(C1)
G =
discrete-time transfer function, Ts=1e-2
(3.5271ẑ 2-7.0019z+3.475)/(0.105ẑ 2-0.2z+9.5e-2)

C2 = pid(G, IFormula=’BackwardEuler’, DFormula=’Trapezoidal’)
C2 =
discrete-time PID controller, Ts=1e-2
Kp + Ki Ii(z) + Kd/(Tf + Id(z))
Ii(z) = Ts z/(z-1) (BackwardEuler)
Id(z) = Ts/2 (z+1)/(z-1) (Trapezoidal)
Kp = 5 Ki = 2 Kd = 3 Tf = 10e-2

See also
pidstd::pidstd, tf::tf

pidstd::pidstd

LTI standard PID controller constructor.

Syntax
use lti
a = pidstd
a = pidstd(Kp, Ti, Td, N)
a = pidstd(Kp, Ti, Td, N, Ts)
a = pidstd(Kp, Ti, Td, N, Ts, var)
a = pidstd(..., IFormula=f1, DFormula=f2)

Description
pidstd(Kp,Ti,Td,N) creates an LTI object which represents the stan-
dard continuous-time PID controller Kp(1/Ts+ Tds/(Tds/N+ 1), where
s is the variable of the Laplace transform. Kp is the proportional gain,
Ti is the integral time, Td is the derivative time, and N is the relative
frequency of the first-order filter of the derivative term. Missing Ti
defaults to infinity (no integral term), missing Td to zero (no derivative

Libraries — lti 697

term), and missing N to infinity (no filter on the derivative term, which
means that the controller is noncausal if Td is nonzero).

A single-input single-output (SISO) PID controller has scalar param-
eters. If the parameters are matrices, they must all have the same
size (scalar values are replicated as required), and the resulting con-
troller has as many inputs as parameters have columns and as many
outputs as parameters have rows; mapping from each input to each
output is and independent SISO PID controller.

pid(Kp,Ti,Td,N,Ts) creates an LTI object which represents the
standard discrete-time PID controller Kp((z)/T + Td/(Td/N + d(z))),
where (z) is the integration formula used for the integral term, d(z)
is the integration formula used for the derivative term, and z is the
variable of the z transform. The formulae can be specified by named
arguments IFormula and DFormula, strings with the following values:

Name Value
’ForwardEuler’ Ts/(z − 1)
’BackwardEuler’ Tsz/(z − 1)
’Trapezoidal’ Ts/2 (z + 1)/(z − 1)

The default formula for both the integral and the derivative terms
is ’ForwardEuler’.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’
for forward time shift, ’ẑ -1’ or ’q̂ -1’ for backward time shift).

For PID controllers based on the gain parameters Kp, Ki=Kp/Ti,
Kd=Kp*Td, and Tf=Td/N, pid objects should be used instead. Class
pidstd is a subclass of pid. The only differences are the arguments
of their constructors and the way their objects are displayed by char,
disp and mathml.

Examples
Simple standard continuous-time PID controller:

use lti
C = pidstd(5,4,1)
C =
continuous-time PID controller
Kp (1 + 1/(Ti s) + Td s/(Td/N s + 1))
Kp = 5 Ti = 4 Td = 1 N = inf

Conversion to a pid object:

C1 = pid(C)
C1 =
continuous-time PID controller
Kp + Ki/s + Kd s/(Tf s + 1)
Kp = 5 Ki = 1.25 Kd = 5 Tf = 0

698 Sysquake Remote ©1999-2016, Calerga Sàrl

Standard discrete-time PD controller where the derivative term, fil-
tered with a time constant 20 times smaller than the derivator time, is
approximated with the Backward Euler formula, with a sampling period
of 1ms. The controller is displayed with the backward-shift operator
q̂ -1.

C = pidstd(5,0,1,20,1e-3,’q̂ -1’,DFormula=’BackwardEuler’)
C =
discrete-time PID controller, Ts=1e-3
Kp (1 + Ii(q̂ -1)/Ti + Td/(Td/N + Id(q̂ -1)))
Ii(q̂ -1) = Ts q̂ -1/(1-q̂ -1) (ForwardEuler)
Id(q̂ -1) = Ts/(1-q̂ -1) (BackwardEuler)
Kp = 5 Ti = 0 Td = 1 N = 20

See also
pid::pid, tf::tf

ss::ss

LTI state-space constructor.

Syntax
use lti
a = ss
a = ss(A, B, C, D)
a = ss(A, B, C, D, Ts)
a = ss(A, B, C, D, Ts, var)
a = ss(A, B, C, D, b)
a = ss(b)

Description
ss(A,B,C,D) creates an LTI object which represents the continuous-
time state-space model

x’(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t)

ss(A,B,C,D,Ts) creates an LTI object which represents the discrete-
time state-space model with sampling period Ts

x(k+1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k)

In both cases, if D is 0, it is resized to match the size of B and C if neces-
sary. An additional argument var may be used to specify the variable
of the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or
’q’).

Libraries — lti 699

ss(A,B,C,D,b), where b is an LTI object, creates a state-space
model of the same kind (continuous/discrete time, sampling time and
variable) as b.

ss(b) converts the LTI object b to a state-space model.

Examples
use lti
sc = ss(-1, [1,2], [2;5], 0)
sc =
continuous-time LTI state-space system
A =

-1
B =

1 2
C =

2
5

D =
0 0
0 0

sd = ss(tf(1,[1,2,3,4],0.1))
sd =
discrete-time LTI state-space system, Ts=0.1
A =
-2 -3 -4
1 0 0
0 1 0

B =
1
0
0

C =
0 0 1

D =
0

See also
tf::tf

tf::tf

LTI transfer function constructor.

Syntax
use lti
a = tf
a = tf(num, den)

700 Sysquake Remote ©1999-2016, Calerga Sàrl

a = tf(numlist, denlist)
a = tf(..., Ts)
a = tf(..., Ts, var)
a = tf(..., b)
a = tf(gain)
a = tf(b)

Description
tf(num,den) creates an LTI object which represents the continuous-
time transfer function specified by descending-power coefficient vec-
tors num and den. tf(num,den,Ts) creates an LTI object which repre-
sents a discrete-time transfer function with sampling period Ts.

In both cases, num and den can be replaced with cell arrays of coef-
ficients whose elements are the descending-power coefficient vectors.
The number of rows is the number of system outputs, and the number
of columns is the number of system inputs.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’).

tf(...,b), where b is an LTI object, creates a transfer function of
the same kind (continuous/discrete time, sampling time and variable)
as b.

tf(b) converts the LTI object b to a transfer function.
tf(gain), where gain is a matrix, creates a matrix of gains.

Examples
Simple continuous-time system with variable p (p is used only for dis-
play):

use lti
sc = tf(1,[1,2,3,4],’p’)
sc =
continuous-time transfer function
1/(p̂ 3+2p̂ 2+3p+4)

Matrix of discrete-time transfer functions for one input and two out-
puts, with a sampling period of 1ms:

sd = tf({0.1; 0.15}, {[1, -0.8]; [1; -0.78]}, 1e-3)
sd =
discrete-time transfer function, Ts=1e-3
y1/u1: 0.1/(s-0.8)
y2/u1: 0.15/(s-0.78)

See also
zpk::zpk, pid::pid, pidstd::pidstd, ss::ss

Libraries — lti 701

zpk::zpk

LTI zero-pole-gain constructor.

Syntax
use lti
a = zpk(z, p, k)
a = zpk(Z, P, K)
a = zpk(..., Ts)
a = zpk(..., Ts, var)
a = zpk(..., b)
a = zpk(b)

Description
zpk creates a zero-pole-gain LTI object. It accepts a vector of zeros,
a vector of poles, and a scalar gain for a simple-input simple-output
(SISO) system; or a cell array of zeros, a cell array of poles, and a
real array of gains for multiple-input multiple-output (MIMO) systems.
zpk(z,p,k,Ts) creates an LTI object which represents a discrete-time
transfer function with sampling period Ts.

In both cases, z and p can be replaced with cell arrays of coeffi-
cients whose elements are the zeros and poles vectors, and k with a
matrix of the same size. The number of rows is the number of system
outputs, and the number of columns is the number of system inputs.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’).

zpk(...,b), where b is an LTI object, creates a zero-pole-gain
transfer function of the same kind (continuous/discrete time,
sampling time and variable) as b.

zpk(b) converts the LTI object b to a zero-pole-gain transfer func-
tion.

Example
use lti
sd = zpk(0.3, [0.8+0.5j; 0.8-0.5j], 10, 0.1)
discrete-time zero-pole-gain transfer function, Ts=0.1
10(z-0.3)/(z-(0.8+0.5j)(z-(0.8-0.5j)

See also
tf::tf, pid::pid, pidstd::pidstd, ss::ss

lti::append

Append the inputs and outputs of systems.

702 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use lti
b = append(a1, a2, ...)

Description
append(a1,a2) builds a system with inputs [u1;u2] and outputs
[y1;y2], where u1 and u2 are the inputs of a1 and y1 and y2
their outputs, respectively. append accepts any number of input
arguments.

See also
lti::connect, ss::augstate

ss::augstate

Extend the output of a system with its states.

Syntax
use lti
b = augstate(a)

Description
augstate(a) extends the ss object a by adding its states to its out-
puts. The new output is [y;x], where y is the output of a and x is its
states.

See also
lti::append

lti::beginning

First index.

Syntax
use lti
var(...beginning...)

Description
In an expression used as an index between parenthesis, beginning(a)
gives the first valid value for an index. It is always 1.

Libraries — lti 703

See also
lti::end, lti::subsasgn, lti::subsref

lti::c2d

Conversion from continuous time to discrete time.

Syntax
use lti
b = c2d(a, Ts)
b = c2d(a, Ts, method)

Description
c2d(a,Ts) converts the continuous-time system a to a discrete-time
system with sampling period Ts.

c2d(a,Ts,method) uses the specified conversion method. method
is one of the methods supported by c2dm for classes ss, tf and zpk,
and ’ForwardEuler’, ’BackwardEuler’ or ’Trapezoidal’ for classes
pid and pidstd.

See also
lti::d2c, c2dm

lti::connect

Arbitrary feedback connections.

Syntax
use lti
b = connect(a, links, in, out)

Description
connect(a,links,in,out) modifies lti object a by connecting some
of the outputs to some of the inputs and by keeping some of the inputs
and some of the outputs. Connections are specified by the rows of
matrix link. In each row, the first element is the index of the system
input where the connection ends; other elements are indices to system
outputs which are summed. The sign of the indices to outputs gives
the sign of the unit weight in the sum. Zeros are ignored. Arguments
in and out specify which input and output to keep.

See also
lti::feedback

704 Sysquake Remote ©1999-2016, Calerga Sàrl

lti::ctranspose

Conjugate transpose.

Syntax
use lti
b = a’
b = ctranspose(a)

Description
a’ or ctranspose(a) gives the conjugate transpose of a.

The conjugate of the single-input single-output (SISO) continuous-
time transfer function G(s) is defined as G(-s), and the conjugate of
the SISO discrete-time transfer function G(z) is defined as G(1/z); the
conjugate transpose is the conjugate of the transpose of the original
system.

See also
lti::transpose, operator ’

ss::ctrb

Controllability matrix.

Syntax
use lti
C = crtb(a)

Description
ctrb(a) gives the controllability matrix of system a, which is full-rank
if and only if a is controllable.

See also
ss::obsv

lti::d2c

Conversion from discrete time to continuous time.

Syntax
use lti
b = d2c(a)
b = d2c(a, method)

Libraries — lti 705

Description

d2c(a) converts the discrete-time system a to a continuous-time sys-
tem.

d2c(a,method) uses the specified conversion method. method is
one of the methods supported by d2cm for classes ss, tf and zpk, and
is ignored for class pid and pidstd.

See also

lti::c2d, d2cm

lti::dcgain

Steady-state gain.

Syntax
use lti
g = dcgain(a)

Description

dcgain(a) gives the steady-state gain of system a.

See also

lti::norm

lti::end

Last index.

Syntax
use lti
var(...end...)

Description

In an expression used as an index between parenthesis, end gives the
last valid value for that index. It is size(var,1) or size(var,2).

706 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
Time response when the last input is a step:

use lti
P = ss([1,2;-3,-4],[1,0;0,1],[3,5]);
P1 = P(:, end)
continuous-time LTI state-space system
A =

1 2
-3 -4

B =
0
1

C =
3 5

D =
0

step(P1);

See also
lti::beginning, lti::subsasgn, lti::subsref

lti::evalfr

Frequency value.

Syntax
use lti
y = evalfr(a, x)

Description
evalfr(a,x) evaluates system a at complex value or values x. If x is
a vector of values, results are stacked along the third dimension.

Example
use lti
sys = [tf(1, [1,2,3]), tf(2, [1,2,3,4])];
evalfr(sys, 0:1j:3j)
ans =
1x2x4 array
(:,:,1) =
0.3333 0.5

(:,:,2) =
0.25 -0.25j 0.5 -0.5j

(:,:,3) =
-5.8824e-2-0.2353j -0.4 +0.2j
(:,:,4) =
-8.3333e-2-8.3333e-2j -5.3846e-2+6.9231e-2j

Libraries — lti 707

See also

polyval

frd::fcat

Frequency concatenation.

Syntax
use lti
c = fcat(a, b)

Description

fcat(a,b) concatenates the frequency response data of frd objects a
and b along the frequency axis, and sort data by increasing frequency.
The size of a and b must be the same (same numbers of inputs and
outputs).

Example
use lti
G = tf(1, [1, 2, 3, 4]);
a = frd(G, 0:5);
b = frd(G, 6:20);
c = fcat(a, b);
d = frd(G, 0:20); // same as c

See also

frd::frd

lti::feedback

Feedback connection.

Syntax
use lti
c = feedback(a, b)
c = feedback(a, b, sign)
c = feedback(a, b, ina, outa)
c = feedback(a, b, ina, outa, sign)

708 Sysquake Remote ©1999-2016, Calerga Sàrl

Description

feedback(a,b) connects all the outputs of lti object a to all its inputs
via the negative feedback lti object b.

feedback(a,b,sign) applies positive feedback with weight sign;
the default value of sign is -1.

feedback(a,b,ina,outa) specifies which inputs and outputs of a
to use for feedback. The inputs and outputs of the result always cor-
respond to the ones of a.

See also

lti::connect

frd::frdata

Get frequency response data.

Syntax
use lti
(resp, freq) = frdata(f)
(resp, freq, Ts) = frdata(f)

Description

frdata(f), where f is an frd object, gives the complex frequency
response, the corresponding frequencies, and optionally the sampling
period or the empty array [] for continuous-time systems.

See also

frd::frd

frd::fselect

Frequency selection.

Syntax
use lti
b = fselect(a, ix)
b = fselect(a, sel)
b = fselect(a, freqmin, freqmax)

Libraries — lti 709

Description
fselect(a,ix) selects frequencies of frd object a whose index are in
array ix. The frequencies of the result are a.freq(ix).

fselect(a,sel) selects frequencies of frd object a corresponding
to true values in logical array sel. The frequencies of the result are
a.freq(sel).

fselect(a,freqmin,freqmax) selects frequencies of frd
object a which are greater than or equal to freqmin and less
than or equal to freqmax. The frequencies of the result are
a.freq(a.freq>=freqmin&a.freq<=freqmax).

See also
frd::frd, operator ()

frd::interp

Frequency interpolation.

Syntax
use lti
b = interp(a, freq)
b = interp(a, freq, method)

Description
interp(a,freq) interpolates response data of frd object a at the fre-
quencies in array freq. The frequencies of the result are freq. The
interpolation method is linear. Interpolation for frequencies outside
the frequency range of a yields nan (not a number).

interp(a,freq,method) use the specified method for
interpolation. Method is one of the strings accepted by interp1 (’0’
or ’nearest’, ’<’, ’>’, ’1’ or ’linear’, ’3’ or ’cubic’, ’p’ or
’pchip’).

See also
frd::frd, interp1

lti::inv

System inverse.

Syntax
use lti
b = inv(a)

710 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
inv(a) gives the inverse of system a.

See also
lti::mldivide, lti::mrdivide

isct

Test for a continous-time LTI.

Syntax
use lti
b = isct(a)

Description
isct(a) is true if system a is continuous-time or static, and false oth-
erwise.

See also
isdt

isdt

Test for a discrete-time LTI.

Syntax
use lti
b = isdt(a)

Description
isdt(a) is true if system a is discrete-time or static, and false other-
wise.

See also
isct

lti::isempty

Test for an LTI without input/output.

Libraries — lti 711

Syntax
use lti
b = isempty(a)

Description
isempty(a) is true if system a has no input and/or no output, and false
otherwise.

See also
lti::size, lti::issiso

lti::isproper

Test for a proper (causal) LTI.

Syntax
use lti
b = isproper(a)

Description
isproper(a) is true if lti object a is causal, or false otherwise. An
ss object is always causal. A tf object is causal if all the transfer
functions are proper, i.e. if the degrees of the denominators are at
least as large as the degrees of the numerators.

lti::issiso

Test for a single-input single-output LTI.

Syntax
use lti
b = issiso(a)

Description
issiso(a) is true if lti object a has one input and one output (single-
input single-output system, or SISO), or false otherwise.

lti::size, lti::isempty

tf::mathml zpk::mathml pid::mathml pidstd::mathml

Conversion to MathML.

712 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use lti, lti_mathml
str = mathml(G)
str = mathml(G, false)
str = mathml(..., Format=f, NPrec=n)

Description
mathml(x) converts its argument x to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a last
input argument equal to the logical value false can be specified to
suppress <math>.

By default, mathml converts numbers like format ’%g’ of sprintf.
Named arguments can override them: format is a single letter format
recognized by sprintf and NPrec is the precision (number of deci-
mals).

Example
use lti, lti_mathml
G = zpk(-1, [1, 2+j, 2-j], 2);
m = mathml(G);
math(0, 0, m);

See also
mathml, sprintf

lti::minreal

Minimum realization.

Syntax
use lti
b = minreal(a)
b = minreal(a, tol)

Description
minreal(a) modifies lti object a in order to remove states which are
not controllable and/or not observable. For tf objects, identical zeros
and poles are canceled out.

minreal(a,tol) uses tolerance tol to decide whether to discard a
state or a pair of pole/zero.

Libraries — lti 713

lti::minus

System difference.

Syntax
use lti
c = a - b
c = minus(a, b)

Description
a-b computes the system whose inputs are fed to both a and b and
whose outputs are the difference between outputs of a and b. If a
and b are transfer functions or matrices of transfer functions, this is
equivalent to a difference of matrices.

See also
lti::parallel, lti::plus, lti::uminus

lti::mldivide

System left division.

Syntax
use lti
c = a \ b
c = mldivide(a, b)

Description
a/b is equivalent to inv(a)*b.

See also
lti::mrdivide, lti::times, lti::inv

lti::mrdivide

System right division.

Syntax
use lti
c = a / b
c = mrdivide(a, b)

714 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
a/b is equivalent to a*inv(b).

See also
lti::mldivide, lti::times, lti::inv

lti::mtimes

System product.

Syntax
use lti
c = a * b
c = mtimes(a, b)

Description
a*b connects the outputs of lti object b to the inputs of lti object a.
If a and b are transfer functions or matrices of transfer functions, this
is equivalent to a product of matrices.

See also
lti::series

lti::norm

H2 norm.

Syntax
use lti
h2 = norm(a)

Description
norm(a) gives the H2 norm of the system a.

See also
lti::dcgain

ss::obsv

Observability matrix.

Libraries — lti 715

Syntax
use lti
O = obsv(a)

Description
obsv(a) gives the observability matrix of system a, which is full-rank
if and only if a is observable.

See also
ss::ctrb

lti::parallel

Parallel connection.

Syntax
use lti
c = parallel(a, b)
c = parallel(a, b, ina, inb, outa, outb)

Description
parallel(a,b) connects lti objects a and b in such a way that the
inputs of the result is applied to both a and b, and the outputs of the
result is their sum.

parallel(a,b,ina,inb,outa,outb) specifies which inputs are
shared between a and b, and which outputs are summed. The inputs
of the result are partitioned as [ua,uab,ub] and the outputs as
[ya,yab,yb]. Inputs uab are fed to inputs ina of a and inb of b;
inputs ua are fed to the remaining inputs of a, and ub to the
remaining inputs of b. Similarly, outputs yab are the sum of outputs
outa of a and outputs outb of b, and ya and yb are the remaining
outputs of a and b, respectively.

See also
lti::series

lti::piddata

Get PID parameters.

Syntax
use lti
(Kp, Ki, Kd, Tf) = piddata(a)
(Kp, Ki, Kd, Tf, Ts) = piddata(a)

716 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
piddata(a), where a is any kind of LTI object which has the structure
of a PID controller except for frd, gives the PID parameters Kp, Ki, Kd
and Tf, and optionally the sampling period or the empty array [] for
continuous-time systems. The parameters are given as matrices; the
rows correspond to the outputs, and their columns to the inputs.

See also
pid::pid, lti::pidstddata, lti::tfdata

lti::pidstddata

Get standard PID parameters.

Syntax
use lti
(Kp, Ti, Td, N) = pidstddata(a)
(Kp, Ti, Td, N, Ts) = pidstddata(a)

Description
pidstddata(a), where a is any kind of LTI object which has the struc-
ture of a PID controller except for frd, gives the standard PID parame-
ters Kp, Ti, Td and N, and optionally the sampling period or the empty
array [] for continuous-time systems. The parameters are given as
matrices; the rows correspond to the outputs, and their columns to
the inputs.

See also
pidstd::pidstd, lti::piddata, lti::tfdata

lti::plus

System sum.

Syntax
use lti
c = a + b
c = plus(a, b)

Description
a+b computes the system whose inputs are fed to both a and b and
whose outputs are the sum of the outputs of a and b. If a and b are
transfer functions or matrices of transfer functions, this is equivalent
to a sum of matrices.

Libraries — lti 717

See also
lti::parallel, lti::minus

lti::repmat

Replicate a system.

Syntax
use lti
b = repmat(a, n)
b = repmat(a, [m,n])
b = repmat(a, m, n)

Description
repmat(a,m,n), when a is an lti object and m and n are positive in-
tegers, creates a new system of the same class with m times as many
outputs and n times as many inputs. If a is a matrix of transfer func-
tions, it is replicated m times vertically and n horizontally, as if a were
a numeric matrix. If a is a state-space system, matrices B, C, and D
are replicated to obtain the same effect.

repmat(a,[m,n]) gives the same result as repmat(a,m,n);
repmat(a,n) gives the same result as repmat(a,n,n).

See also
lti::append

lti::series

Series connection.

Syntax
use lti
c = series(a, b)
c = series(a, b, outa, inb)

Description
series(a,b) connects the outputs of lti object a to the inputs of lti
object b.

series(a,b,outa,inb) connects outputs outa of a to inputs inb
of b. Unconnected outputs of a and inputs of b are discarded.

See also
lti::mtimes, lti::parallel

718 Sysquake Remote ©1999-2016, Calerga Sàrl

lti::size

Number of outputs and inputs.

Syntax
use lti
s = size(a)
(nout, nin) = size(a)
n = size(a, dim)

Description
With one output argument, size(a) gives the row vector [nout,nin],
where nout is the number of outputs of system a and nin its number
of inputs. With two output arguments, size(a) returns these results
separately as scalars.

size(a,1) gives only the number of outputs, and size(a,2) only
the number of inputs.

See also
lti::isempty, lti::issiso

lti::ssdata

Get state-space matrices.

Syntax
use lti
(A, B, C, D) = ssdata(a)
(A, B, C, D, Ts) = ssdata(a)

Description
ssdata(a), where a is any kind of LTI object except for frd, gives the
four matrices of the state-space model, and optionally the sampling
period or the empty array [] for continuous-time systems.

See also
ss::ss, lti::tfdata

lti::subsasgn

Assignment to a part of an LTI system.

Libraries — lti 719

Syntax
use lti
var(i,j) = a
var(ix) = a
var(select) = a
var.field = value
a = subsasgn(a, s, b)

Description
The method subsasgn(a) permits the use of all kinds of assignments
to a part of an LTI system. If the variable is a matrix of transfer func-
tions, subsasgn produces the expected result, converting the right-
hand side of the assignment to a matrix of transfer function if required.
If the variable is a state-space model, the result is equivalent; the re-
sult remains a state-space model. For state-space models, changing
all the inputs or all the outputs with the syntax var(expr,:)=sys or
var(:,expr)=sys is much more efficient than specifying both sub-
scripts or a single index.

The syntax for field assignment, var.field=value, is defined for
the following fields: for state-space models, A, B, C, and D (matrices
of the state-space model); for transfer functions, num and den (cell ar-
rays of coefficients); for zero-pole-gain transfer functions, z and p (cell
arrays of zero or pole vectors), and k (gain matrix); for PID controllers,
Kp, Ki, Kd, Tf, Ti and Td (controller parameter matrices); for all LTI ob-
jects, var (string) and Ts (scalar, or empty array for continuous-time
systems). Field assignment must preserve the size of matrices and
arrays.

The syntax with braces (var{i}=value) is not supported.

See also
lti::subsref, operator (), subsasgn

lti::subsref

Extraction of a part of an LTI system.

Syntax
use lti
var(i,j)
var(ix)
var(select)
var.field
b = subsref(a, s)

720 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
The method subsref(a) permits the use of all kinds of extraction of
a part of an LTI system. If the variable is a matrix of transfer func-
tions, subsref produces the expected result. If the variable is a state-
space model, the result is equivalent; the result remains a state-space
model, with the same state vector (the same matrix A) as the original
system. For state-space models, extracting all the inputs or all the
outputs with the syntax var(expr,:) or var(:,expr) is much more
efficient than specifying both subscripts or a single index.

If the variable is an frd object, var(’freq’,i) produces a new frd
object where the frequency vector is var.frequency(i) amd the re-
sponse array contains the corresponding reponse. i can be a scalar
index, a vector of indices or a logical array with the same size as
var.frequency.

The syntax for field access, var.field, is defined for the following
fields: for state-space models, A, B, C, and D (matrices of the state-
space model); for transfer functions, num and den (cell arrays of co-
efficients); for zero-pole-gain transfer functions, z and p (cell arrays
of zero or pole vectors), and k (gain matrix); for PID controllers, Kp,
Ki, Kd, Tf, Ti and Td (controller parameter matrices); for all LTI ob-
jects, var (string) and Ts (scalar, or empty array for continuous-time
systems).

The syntax with braces (var{i}) is not supported.

See also
lti::subsasgn, operator (), subsasgn

lti::tfdata

Get transfer functions.

Syntax
use lti
(num, den) = tfdata(a)
(num, den, Ts) = tfdata(a)

Description
tfdata(a), where a is any kind of LTI object except for frd, gives the
numerator and denominator of the transfer function model, and op-
tionally the sampling period or the empty array [] for continuous-time
systems. The numerators and denominators are given as a cell array
of power-descending coefficient vectors; the rows of the cell arrays
correspond to the outputs, and their columns to the inputs.

Libraries — lti 721

See also
tf::tf, lti::zpkdata, lti::ssdata

lti::transpose

Transpose.

Syntax
use lti
b = a.’
b = transpose(a)

Description
a.’ or transpose(a) gives the transpose of a, i.e. a.’(i,j)=a(j,i).

See also
lti::ctranspose, operator .’

lti::uminus

Negative.

Syntax
use lti
b = -a
b = uminus(a)

Description
-a multiplies all the outputs (or all the inputs) of system a by -1. If a is
a transfer functions or a matrix of transfer functions, this is equivalent
to the unary minus.

See also
lti::minus, lti::uplus

lti::uplus

Positive.

Syntax
use lti
b = +a
b = uplus(a)

722 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
+a gives a.

See also
lti::uminus, lti::plus

lti::zpkdata

Get zeros, poles and gains.

Syntax
use lti
(z, p, k) = zpkdata(a)
(z, p, k, Ts) = zpkdata(a)

Description
zpkdata(a), where a is any kind of LTI object except for frd, gives the
zeros, poles and gains of the transfer function model, and optionally
the sampling period or the empty array [] for continuous-time sys-
tems. The zeros and poles are given as a cell array of vectors; the
rows of the cell arrays correspond to the outputs, and their columns to
the inputs.

See also
zpk::zpk, lti::tfdata

8.10 lti (graphics)

In addition to the class definitions and the computational methods, li-
brary lti includes methods which provide for lti objects the same
functionality as the native graphical functions of Sysquake for dynam-
ical systems, such as bodemag for the magnitude of the Bode diagram
or step for the step response. The system is provided as a single lti
object instead of separate vectors for the numerator and denominator
or four matrices for state-space models. For discrete-time systems,
the sampling time is also obtained from the object, and the method
name is the same as its continuous-time equivalent, without an ini-
tial d (e.g. step(G) is the discrete-time step response of G if G is a
discrete-time tf, zpk or ss object).

The method definitions are stored in a separate file which is refer-
enced in lti with includeifexists; this means that only lti must
be loaded, with

use lti

Libraries — lti (graphics) 723

Functions

lti::bodemag

Magnitude of the Bode plot.

Syntax
use lti
bodemag(a)
bodemag(a, style, id)
(mag, w) = bodemag(a)

Description
bodemag(a) plots the magnitude of the Bode diagram of system a,
which can be any lti object with a single input (size(a,2) must be 1),
continuous-time or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, bodemag gives the magnitude and the fre-

quency as column vectors. No display is produced.

Examples
Green plot for

�

�1/(s3 + 2s2 + 3s + 4)
�

� with s = jω (see Fig. 5.9):

G = tf(1, [1, 2, 3, 4]);
bodemag(G, ’g’);

The same plot, between ω = 0 and ω = 10, with a named argument
for the color:

scale([0,10]);
bodemag(G, Color=’green’);

Frequency response of the discrete-time system 1/(z − 0.9)(z − 0.7 −
0.6j)(z − 0.7 + 0.6j) with unit sampling period:

H = zpk([], [0.9,0.7+0.6j,0.7-0.6j], 1, 1);
bodemag(H);

See also
lti::bodephase, lti::nichols, lti::nyquist, plotset, bodemag

lti::bodephase

Phase of the Bode plot.

724 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use lti
bodephase(a)
bodephase(a, style, id)
(phase, w) = bodephase(a)

Description
bodephase(a) plots the phase of the Bode diagram of system a,
which can be any lti object with a single input (size(a,2) must be 1),
continuous-time or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, bodephase gives the phase and the fre-

quency as column vectors. No display is produced.

See also
lti::bodemag, lti::nichols, lti::nyquist, plotset, bodephase

lti::impulse

Impulse response.

Syntax
use lti
impulse(a)
impulse(a, style, id)
(y, t) = impulse(a)

Description
impulse(a) plots the impulse response of system a, which can be any
lti object with a single input (size(a,2) must be 1), continuous-time
or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, impulse gives the output and the time as

column vectors. No display is produced.

Example
Impulse response of the first order transfer function 1/(s/2 + 1):

G = tf(1, [1/2, 1]);
impulse(G);

See also
lti::step, lti::lsim, ss::initial, plotset, impulse

Libraries — lti (graphics) 725

ss::initial

Time response with initial conditions.

Syntax
use lti
initial(a, x0)
initial(a, x0, style, id)
(y, t) = initial(a, x0)

Description
initial(a,x0) plots the time response of state-space system a with
initial state x0 and null input. System a can be continuous-time or
discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, initial gives the output and the time as

column vectors. No display is produced.

Example
Response of a continuous-time system whose initial state is [5;3]:

a = ss([-0.3,0.1;-0.8,-0.4], [2;3], [1,3;2,1], [2;1]);
initial(a, [5;3])

See also
lti::impulse, lti::step, lti::lsim, plotset, initial

lti::lsim

Time response.

Syntax
use lti
lsim(a, u, t)
lsim(a, u, t, style, id)
(y, t) = lsim(a, u, t)

Description
lsim(a,u,t) plots the time response of system a. For continuous-
time systems, the input is piece-wise linear; it is defined by points in
real vectors t and u, which must have the same length. Input before
t(1) and after t(end) is 0. For discrete-time systems, u is sampled at
the rate given by the system, and t is ignored or can be omitted.

The optional arguments style and id have their usual meaning.
With output arguments, lsim gives the output and the time as col-

umn vectors. No display is produced.

726 Sysquake Remote ©1999-2016, Calerga Sàrl

Example
Response of continuous-time system given by its transfer function with
an input defined by linear segments, displayed as a solid blue line:

G = tf(1, [1, 2, 3, 4]);
t = [0, 10, 20, 30, 50];
u = [1, 1, 0, 1, 1];
lsim(G, u, t, Color = ’blue’);

See also
lti::impulse, lti::step, ss::initial, plotset, lsim

lti::nichols

Nichols plot.

Syntax
use lti
nichols(a, ...)
(mag, phase, w) = nichols(a, ...)

Description
nichols(a) plots the Nichols diagram of system a, which can be any
lti object with a single input (size(a,2) must be 1), continuous-time
or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, nichols gives the magnitude, the phase

and the corresponding frequency as column vectors. No display is
produced.

See also
lti::nyquist, lti::bodemag, lti::bodephase, plotset, nichols

lti::nyquist

Nyquist plot.

Syntax
use lti
nyquist(a, ...)
(re, im, w) = nyquist(a, ...)

Libraries — lti (graphics) 727

Description
nyquist(a) plots the Nyquist diagram of system a, which can be any
lti object with a single input (size(a,2) must be 1), continuous-time
or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, nyquist gives the real part, the imaginary

part and the corresponding frequency as column vectors. No display
is produced.

See also
lti::nichols, lti::bodemag, lti::bodephase, plotset, nyquist

lti::pzmap

Pole/zero map.

Syntax
use lti
pzmap(a)
pzmap(a, style)

Description
pzmap(a) plots the poles and the zeros of system a in the complex
plane. Poles are represented with crosses and zeros with circles. The
system must be SISO (single-input, single-output).

With a second input argument, pzmap(a,style) uses the specified
style for the poles and zeros. Typically, style is a structure array of
two elements: the first element contains style options for the poles,
and the second element, for the zeros. An empty structure (0 element)
stands for the default style, and a simple structure uses the same style
for the poles and the zeros.

Examples
Pole/zero map of a transfer function:

use lti
G = tf([2, 3, 4], [1, 2, 3, 4]);
pzmap(G);

Pole/zero map with the same scale along x and y axes, a grid showing
relative damping and natural frequencies, and explicit style:

728 Sysquake Remote ©1999-2016, Calerga Sàrl

use lti
G = tf([2, 3, 4], [1, 2, 3, 4]);
scale equal;
sgrid;
plotoption fullgrid;
style = {
Marker=’x’, MarkerEdgeColor=’red’;
Marker=’o’, MarkerEdgeColor=’navy’, MarkerFaceColor=’yellow’

}
pzmap(G, style);

See also
lti::rlocus, plotset, plotroots

lti::rlocus

Root locus.

Syntax
use lti
rlocus(a)
rlocus(a, style, id)

Description
rlocus(a) plots the root locus of system a, i.e. the locus of the poles
of the system obtained by adding a feedback loop with a positive real
gain. Only the root locus itself is displayed, as a solid line by default.
Open-loop poles and zeros (the extremities of the root locus), which
are typically displayed with special markers, can be added with pzmap.

The optional arguments style and id have their usual meaning.

Example
Root locus of a transfer function with open-loop poles and zeros dis-
played with pzmap. The scale is the same along x and y axes thanks
to a call to scale, and a grid shows relative damping and natural fre-
quencies.

use lti
G = tf([2, 3, 1], [1, 2, 3, 4]);
scale equal;
sgrid;
plotoption fullgrid;
rlocus(G);
pzmap(G);

Libraries — sigenc 729

See also
lti::pzmap, plotset, rlocus

lti::step

Step response.

Syntax
use lti
step(a)
step(a, style, id)
(y, t) = step(a)

Description
step(a) plots the step response of system a, which can be any lti
object with a single input (size(a,2) must be 1), continuous-time or
discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, step gives the output and the time as col-

umn vectors. No display is produced.

See also
lti::impulse, lti::lsim, ss::initial, plotset, step

8.11 sigenc

sigenc is a library which adds to LME functions for encoding and de-
coding scalar signals. It implements quantization, DPCM (differential
pulse code modulation), and companders used in telephony.

The following statement makes available functions defined in
sigenc:

use sigenc

Functions

alawcompress

A-law compressor.

730 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use sigenc
output = alawcompress(input)
output = alawcompress(input, a)

Description
alawcompress(input,a) compresses signal input with A-law method
using parameter a. The signal is assumed to be in [-1,1]; values out-
side this range are clipped. input can be a real array of any size and
dimension. The default value of a is 87.6.

The compressor and its inverse, the expander, are static, nonlin-
ear filters used to improve the signal-noise ratio of quantized signals.
The compressor should be used before quantization (or on a signal
represented with a higher precision).

See also
alawexpand, ulawcompress

alawexpand

A-law expander.

Syntax
use sigenc
output = alawexpand(input)
output = alawexpand(input, a)

Description
alawexpand(input,a) expands signal input with A-law method using
parameter a. input can be a real array of any size and dimension.
The default value of a is 87.6.

See also
alawcompress, ulawexpand

dpcmdeco

Differential pulse code modulation decoding.

Syntax
use sigenc
output = dpcmdeco(i, codebook, predictor)

Libraries — sigenc 731

Description
dpcmdeco(i,codebook,predictor) reconstructs a signal encoded
with differential pulse code modulation. It performs the opposite of
dpcmenco.

See also
dpcmenco, dpcmopt

dpcmenco

Differential pulse code modulation encoding.

Syntax
use sigenc
i = dpcmenco(input, codebook, partition, predictor)

Description
dpcmenco(input,codebook,partition,predictor) quantizes the
signal in vector input with differential pulse code modulation. It
predicts the future response with the finite-impulse response filter
given by polynomial predictor, and it quantizes the residual error
with codebook and partition like quantiz. The output i is an array
of codes with the same size and dimension as input.

The prediction y∗(k) for sample k s

y∗(k) =
degpredictor

∑

=1

predictor · yq(k −)

where yq(k) is the quantized (reconstructed) signal. The predictor
must be strictly causal: predictor(0) must be zero. To encode the
difference between in(k) and yq(k-1), predictor=[0,1]. Note that
there is no drift between the reconstructed signal and the input 1,
contrary to the case where the input is differentiated, quantized, and
integrated.

Example
use sigenc
t = 0:0.1:10;
x = sin(t);
codebook = -.1:.01:.1;
partition = -.0:.01:.09;
predictor = [0, 1];
i = dpcmenco(x, codebook, partition, predictor);
y = dpcmdeco(i, codebook, predictor);

1Actually, there may be a drift if the arithmetic units used for encoding and decoding
do not produce exactly the same results.

732 Sysquake Remote ©1999-2016, Calerga Sàrl

See also

quantiz, dpcmdeco, dpcmopt

dpcmopt

Differential pulse code modulation decoding.

Syntax
use sigenc
(predictor, codebook, partition) = dpcmopt(in, order, n)
(predictor, codebook, partition) = dpcmopt(in, order, codebook0)
(predictor, codebook, partition) = dpcmopt(in, predictor, ...)
(predictor, codebook, partition) = dpcmopt(..., tol)
predictor = dpcmopt(in, order)

Description

dpcmopt(in,order,n) gives the optimal predictor of order order,
codebook of size n and partition to encode the signal in vector in
with differential pulse code modulation. The result can be used with
dpcmenco to encode signals with similar properties. If the second
input argument is a vector, it is used as the predictor and not
optimized further; its first element must be zero. If the third input
argument is a vector, it is used as an initial guess for the codebook,
which has the same length. An optional fourth input argument
provides the tolerance (the default is 1e-7).

If only the predictor is required, only the input and the predictor
order must be supplied as input arguments.

See also

dpcmenco, dpcmdeco, lloyds

lloyds

Optimal quantization.

Syntax
use sigenc
(partition, codebook) = lloyds(input, n)
(partition, codebook) = lloyds(input, codebook0)
(partition, codebook) = lloyds(..., tol)

Libraries — sigenc 733

Description
lloyds(input,n) computes the optimal partition and codebook for
quantizing signal input with n codes, using the Lloyds algorithm.

If the second input argument is a vector,
lloyds(input,codebook0) uses codebook0 as an initial guess for
the codebook. The result has the same length.

A third argument can be used to specify the tolerance used as the
stopping criterion of the optimization loop. The default is 1e-7.

Example
We start from a suboptimal partition and compute the distortion:

use sigenc
partition = [-1, 0, 1];
codebook = [-2, -0.5, 0.5, 2];
in = -5:0.6:3;
(i, out, dist) = quantiz(in, partition, codebook);
dist
2.1421

The partition is optimized with lloyds, and the same signal is quan-
tized again. The distortion is reduced.

(partition_opt, codebook_opt) = lloyds(in, codebook)
partition_opt =

-2.9 -0.5 1.3
codebook_opt =
-4.1 -1.7 0.4 2.2

(i, out, dist) = quantiz(in, partition_opt, codebook_opt);
dist
1.0543

See also
quantiz, dpcmopt

quantiz

Table-based signal quantization.

Syntax
use sigenc
i = quantiz(input, partition)
(i, output, distortion) = quantiz(input, partition, codebook)

734 Sysquake Remote ©1999-2016, Calerga Sàrl

Description

quantiz(input,partition) quantizes signal input using partition
as boundaries between different ranges. Range from −∞ to
partition(1) corresponds to code 0, range from partition(1) to
partition(2) corresponds to code 1, and so on. input may be a real
array of any size and dimension; partition must be a sorted vector.
The output i is an array of codes with the same size and dimension
as input.

quantiz(input,partition,codebook) uses codebook as a look-
up table to convert back from codes to signal. It should be a vector
with one more element than partition. With a second output argu-
ment, quantiz gives codebook(i).

With a third output argument, quantiz computes the distortion be-
tween input and codebook(i), i.e. the mean of the squared error.

Example
use sigenc
partition = [-1, 0, 1];
codebook = [-2, -0.5, 0.5, 2];
in = randn(1, 5)
in =
0.1799 -9.7676e-2 -1.1431 -0.4986 1.0445

(i, out, dist) = quantiz(in, partition, codebook)
i =
2 1 0 1 2

out =
0.5 -0.5 -2 -0.5 0.5

dist =
0.259

See also

lloyds, dpcmenco

ulawcompress

mu-law compressor.

Syntax
use sigenc
output = ulawcompress(input)
output = ulawcompress(input, mu)

Libraries — wav 735

Description
ulawcompress(input,mu) compresses signal input with mu-law
method using parameter mu. input can be a real array of any size
and dimension. The default value of mu is 255.

The compressor and its inverse, the expander, are static, nonlin-
ear filters used to improve the signal-noise ratio of quantized signals.
The compressor should be used before quantization (or on a signal
represented with a higher precision).

See also
ulawexpand, alawcompress

ulawexpand

mu-law expander.

Syntax
use sigenc
output = ulawexpand(input)
output = ulawexpand(input, mu)

Description
ulawexpand(input,mu) expands signal input with mu-law method
using parameter a. input can be a real array of any size and dimen-
sion. The default value of mu is 255.

See also
ulawcompress, alawexpand

8.12 wav

wav is a library which adds to LME functions for encoding and decoding
WAV files. WAV files contain digital sound. The wav library supports un-
compressed, 8-bit and 16-bit, monophonic and polyphonic WAV files.
It can also encode and decode WAV data in memory without files.

The following statement makes available functions defined in wav:

use wav

Functions

wavread

WAV decoding.

736 Sysquake Remote ©1999-2016, Calerga Sàrl

Syntax
use wav
(samples, samplerate, nbits) = wavread(filename)
(samples, samplerate, nbits) = wavread(filename, n)
(samples, samplerate, nbits) = wavread(filename, [n1,n2])
(samples, samplerate, nbits) = wavread(data, ...)

Description
wavread(filename) reads the WAV file filename. The result is a 2-d
array, where each row corresponds to a sample and each column to a
channel. Its class is the same as the native type of the WAV file, i.e.
int8 or int16.

wavread(filename,n), where n is a scalar integer, reads the first n
samples of the file. wavread(filename,[n1,n2]), where the second
input argument is a vector of two integers, reads samples from n1 to
n2 (the first sample corresponds to 1).

Instead of a file name string, the first input argument can be a
vector of bytes, of class int8 or uint8, which represents directly the
contents of the WAV file.

In addition to the samples, wavread can return the sample rate in
Hz (such as 8000 for phone-quality speech or 44100 for CD-quality
music), and the number of bits per sample and channel.

See also
wavwrite

wavwrite

WAV encoding.

Syntax
use wav
wavwrite(samples, samplerate, nbits, filename)
data = wavwrite(samples, samplerate, nbits)
data = wavwrite(samples, samplerate)

Description
wavwrite(samples,samplerate,nbits,filename) writes a WAV file
filename with samples in array samples, sample rate samplerate (in
Hz), and nbits bits per sample and channel. Rows of samples corre-
sponds to samples and columns to channels. nbits can be 8 or 16.

With 2 or 3 input arguments, wavwrite returns the contents of the
WAV file as a vector of class uint8. The default word size is 16 bits
per sample and channel.

Libraries — date 737

Example
use wav
sr = 44100;
t = (0:sr)’ / sr;
s = sin(2 * pi * 740 * t);
wavwrite(map2int(s, -1, 1, ’int16’), sr, 16, ’beep.wav’);

See also
wavread

8.13 date

date is a library which adds to LME functions to convert date and time
between numbers and strings.

The following statement makes available functions defined in date:

use date

Functions

datestr

Date to string conversion.

Syntax
use date
str = datestr(datetime)
str = datestr(date, format)

Description
datestr(datetime) converts the date and time to a string. The input
argument can be a vector of 3 to 6 elements for the year, month, day,
hour, minute, and second; a julian date as a scalar number; or a string,
which is converted by datevec. The result has the following format:

jj-mmm-yyyy HH:MM:SS

where jj is the two-digit day, mmm the beginning of the month name,
yyyy the four-digit year, HH the two-digit hour, MM the two-digit minute,
and SS the two-digit second.

The format can be specified with a second input argument. When
datestr scans the format string, it replaces the following sequences
of characters and keeps the other ones unchanged:

738 Sysquake Remote ©1999-2016, Calerga Sàrl

Sequence Replaced with
dd day (2 digits)
ddd day of week (3 char)
HH hour (2 digits, 01-12 or 00-23)
MM minute (2 digits)
mm month (2 digits)
mmm month (3 char)
PM AM or PM
QQ quarter (Q1 to Q4)
SS second (2 digits)
sss fraction of second (1-12 digits)
yy year (2 digits)
yyyy year (4 digits)

If the sequence PM is found, the hour is between 1 and 12; other-
wise, between 0 and 23. Second fraction has as many digits as there
are ’s’ characters in the format string.

Examples
use date
datestr(clock)
18-Apr-2005 16:21:55

datestr(clock, ’ddd mm/dd/yyyy HH:MM PM’)
Mon 04/18/2005 04:23 PM

datestr(clock, ’yyyy-mm-ddTHH:MM:SS,sss’)
2008-08-23T02:41:37,515

See also
datevec, julian2cal, clock

datevec

String to date and time conversion.

Syntax
use date
datetime = datevec(str)

Description
datevec(str) converts the string str representing the date and/or
the time to a row vector of 6 elements for the year, month, day, hour,
minute, and second. The following formats are recognized:

Libraries — date 739

Example Value
20050418T162603 ISO 8601 date and time
2005-04-18 year, month and day
2005-Apr-18 year, month and day
18-Apr-2005 day, month and year
04/18/2005 month, day and year
04/18/00 month, day and year
18.04.2005 day, month and year
18.04.05 day, month and year
16:26:03 hour, minute and second
16:26 hour and minute
PM afternoon

Unrecognized characters are ignored. If the year is given as two
digits, it is assumed to be between 1951 and 2050.

Examples
use date
datevec(’Date and time: 20050418T162603’)
2005 4 18 16 26 3

datevec(’03:57 PM’)
0 0 0 15 57 0

datevec(’01-Aug-1291’)
1291 8 1 0 0 0

datevec(’At 16:30 on 11/04/07’)
2007 11 4 16 30 0

See also
datestr

weekday

Week day of a given date.

Syntax
use date
(num, str) = weekday(year, month, day)
(num, str) = weekday(datetime)
(num, str) = weekday(jd)

Description
weekday finds the week day of the date given as input. The date can
be given with three input arguments for the year, the month and the
day, or with one input argument for the date or date and time vector,
or julian date.

740 Sysquake Remote ©1999-2016, Calerga Sàrl

The first output argument is the number of the day, from 1 for
Sunday to 7 for Saturday; and the second output argument is its name
as a string of 3 characters, such as ’Mon’ for Monday.

Example

Day of week of today:

use date
(num, str) = weekday(clock)
num =
2

str =
Mon

See also

cal2julian

8.14 constants

constants is a library which defines physical constants in SI units (me-
ter, kilogram, second, ampere, kelvin, candela, mole).

The following statement makes available constants defined in
constants:

use constants;

The following constants are defined:

Libraries — colormaps 741

Name Value Unit
avogadro_number 6.0221367e23 1/mole
boltzmann_constant 1.380658e-23 J/K
earth_mass 5.97370e24 kg
earth_radius 6.378140e6 m
electron_charge 1.60217733e-19 C
electron_mass 9.1093897e-31 kg
faraday_constant 9.6485309e4 C/mole
gravitational_constant 6.672659e-11 N m 2̂/kĝ 2
gravity_acceleration 9.80655 m/ŝ 2
hubble_constant 3.2e-18 1/s
ice_point 273.15 K
induction_constant 1.256e-6 V s/A m
molar_gaz_constant 8.314510 J/K mole
molar_volume 22.41410e-3 m 3̂/mole
muon_mass 1.8835327e-28 kg
neutron_mass 1.6749286e-27 kg
plank_constant 6.6260755e-34 J s
plank_constant_reduced 1.0545727e-34 J s
plank_mass 2.17671e-8 kg
proton_mass 1.6726231e-27 kg
solar_radius 6.9599e8 m
speed_of_light 299792458 m/s
speed_of_sound 340.29205 m/s
stefan_boltzmann_constant 5.67051e-8 W/m 2̂ K̂ -4
vacuum_permittivity 8.854187817e-12 A s/V m

8.15 colormaps

colormaps is a library containing functions related to color maps.
Color maps are tables of colors which can be used with the colormap
function; they are used by functions such as image and surf to map
values to colors.

All functions accept at least the number of colors n as input ar-
gument, and produce an n-by-3 real double array which can be used
directly as the argument of colormap. The default value of n is 256.

colormaps defines the following functions:

742 Sysquake Remote ©1999-2016, Calerga Sàrl

Function Description
black2orangecm color shades from black to orange
black2red2whitecm color shades from black to red and white
blue2greencm color shades from blue to green
blue2yellow2redcm color shades from blue to yellow and red
cyan2magentacm color shades from cyan to magenta
graycm gray shades from black to white
green2yellowcm color shades from green to yellow
huecm color shades from red to red through green and blue
interprgbcm colormap created with linear interpolation
magenta2yellowcm color shades from magenta to yellow
red2yellowcm color shades from red to yellow
sepiacm sepia shades
whitecm plain white

The following statement makes available functions defined in
colormaps:

use colormaps

Functions are typically used directly as the argument of colormap:

colormap(blue2yellow2red);

Functions

black2orangecm

Colormap with shades from black to orange.

Syntax
use colormaps
cm = black2orangecm
cm = black2orangecm(n)

Description
black2orangecm(n) creates a color map with n entries corresponding
to color shades from black to orange. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2red2whitecm, blue2greencm, blue2yellow2redcm,
cyan2magentacm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

Libraries — colormaps 743

black2red2whitecm

Colormap with shades from black to red and white.

Syntax
use colormaps
cm = black2red2whitecm
cm = black2red2whitecm(n)

Description
black2red2whitecm(n) creates a color map with n entries
corresponding to color shades from black to red and white. The color
map is an n-by-3 array with one color per row; columns correspond to
red, green, and blue components as real numbers between 0 to 1
(maximum intensity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, blue2greencm, blue2yellow2redcm,
cyan2magentacm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

blue2greencm

Colormap with shades from blue to green.

Syntax
use colormaps
cm = blue2greencm
cm = blue2greencm(n)

Description
blue2greencm(n) creates a color map with n entries corresponding
to color shades from blue to green. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm,
whitecm

744 Sysquake Remote ©1999-2016, Calerga Sàrl

blue2yellow2redcm

Colormap with shades from blue to yellow and red.

Syntax
use colormaps
cm = blue2yellow2redcm
cm = blue2yellow2redcm(n)

Description
blue2yellow2redcm(n) creates a color map with n entries
corresponding to color shades from blue to yellow and red. The color
map is an n-by-3 array with one color per row; columns correspond to
red, green, and blue components as real numbers between 0 to 1
(maximum intensity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
cyan2magentacm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

cyan2magentacm

Colormap with shades from cyan to magenta.

Syntax
use colormaps
cm = cyan2magentacm
cm = cyan2magentacm(n)

Description
cyan2magentacm(n) creates a color map with n entries corresponding
to color shades from cyan to magenta. The color map is an n-by-3
array with one color per row; columns correspond to red, green, and
blue components as real numbers between 0 to 1 (maximum inten-
sity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

Libraries — colormaps 745

graycm

Colormap with shades of gray.

Syntax
use colormaps
cm = graycm
cm = graycm(n)

Description
graycm(n) creates a color map with n entries corresponding to gray
shades from black to white. The color map is an n-by-3 array with one
color per row; columns correspond to red, green, and blue components
as real numbers between 0 to 1 (maximum intensity). The default
value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, green2yellowcm, huecm,
interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm, whitecm

green2yellowcm

Colormap with shades from green to yellow.

Syntax
use colormaps
cm = green2yellowcm
cm = green2yellowcm(n)

Description
green2yellowcm(n) creates a color map with n entries corresponding
to color shades from green to yellow. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

746 Sysquake Remote ©1999-2016, Calerga Sàrl

huecm

Colormap with hue from red to red through green and blue.

Syntax
use colormaps
cm = huecm
cm = huecm(n)

Description
huecm(n) creates a color map with n entries corresponding to color
shades with hue varying linearly from red back to red through green
and blue. In HSV (hue-saturation-value) space, saturation and value
are 1 (maximum). The color map is an n-by-3 array with one color per
row; columns correspond to red, green, and blue components as real
numbers between 0 to 1 (maximum intensity). The default value of n
is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm, whitecm

interprgbcm

Colormap with entries obtained by linear interpolation.

Syntax
use colormaps
cm = interprgbcm(i, r, g, b)
cm = interprgbcm(i, r, g, b, n)

Description
interprgbcm(i,r,b,g,n) creates a color map with n entries. Color
shades are interpolated between colors defined in RGB color space by
corresponding elements of r, g and b, defined for input in i. These
four arguments must be vectors of the same length larger or equal to
2 with elements between 0 and 1. Argument i must have monotonous
entries with i(1)=0 and i(end)=1. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

Libraries — colormaps 747

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, magenta2yellowcm, red2yellowcm, sepiacm, whitecm

magenta2yellowcm

Colormap with shades from magenta to yellow.

Syntax
use colormaps
cm = magenta2yellowcm
cm = magenta2yellowcm(n)

Description
magenta2yellowcm(n) creates a color map with n entries correspond-
ing to color shades from magenta to yellow. The color map is an n-by-3
array with one color per row; columns correspond to red, green, and
blue components as real numbers between 0 to 1 (maximum inten-
sity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, red2yellowcm, sepiacm, whitecm

red2yellowcm

Colormap with shades from red to yellow.

Syntax
use colormaps
cm = red2yellowcm
cm = red2yellowcm(n)

Description
red2yellowcm(n) creates a color map with n entries corresponding
to color shades from red to yellow. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

748 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, sepiacm, whitecm

sepiacm

Colormap with shades of sepia.

Syntax
use colormaps
cm = sepiacm
cm = sepiacm(n)

Description
sepiacm(n) creates a color map with n entries corresponding to
shades of sepia. The color map is an n-by-3 array with one color per
row; columns correspond to red, green, and blue components as real
numbers between 0 to 1 (maximum intensity). The default value of n
is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, red2yellowcm, whitecm

whitecm

Colormap with plain white.

Syntax
use colormaps
cm = whitecm
cm = whitecm(n)

Description
whitecm(n) creates a color map with n identical entries corresponding
to plain white. The color map is an n-by-3 array with one color per
row; columns correspond to red, green, and blue components as real
numbers between 0 to 1 (maximum intensity). The default value of n
is 256.

The color map is suitable as the input argument of colormap.

Libraries — polyhedra 749

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm

8.16 polyhedra

Library polyhedra implements functions which create solid shapes
with polygonal facesin 3D. Solids are displayed with plotpoly. They
are defined by the coordinates of their vertices and by the list of vertex
indices for each face. Other solids, such as cylinder and sphere, are
generated with parametric equations and displayed with surf. Some
solids have parameters, e.g. for the number of discrete values used
for parameters. When called without output argument, with an op-
tional trailing string argument for the edge style, the solid is displayed
with the current scaling and color map. With output arguments, ar-
rays X, Y, Z expected by surf, mesh and plotpoly, and index array
expected by plotpoly, are produced. They can be modified to move,
scale or stretch the solids.

The following statement makes available functions defined in
polyhedra:

use polyhedra

Functions

cube

Create a cube.

Syntax
use polyhedra
cube;
cube(style);
(X, Y, Z, ind) = cube

Description
Without output argument, cube displays a cube, i.e. a convex solid
whose six faces are squares. By default, edges are not drawn. An
optional string input argument specifies the edge style.

With four output arguments, cube produces the X, Y, Z and ind
arrays expected by plotpoly, and it does not display anything.

750 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
tetrahedron, octahedron, dodecahedron, icosahedron, plotpoly

dodecahedron

Create a regular dodecahedron.

Syntax
use polyhedra
dodecahedron;
dodecahedron(style);
(X, Y, Z, ind) = dodecahedron

Description
Without output argument, dodecahedron displays a regular convex
dodecahedron, i.e. a convex solid whose twelve faces are regular pen-
tagons. By default, edges are not drawn. An optional string input
argument specifies the edge style.

With four output arguments, dodecahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

See also
tetrahedron, cube, octahedron, icosahedron, greatdodecahedron,
greatstellateddodecahedron, smallstellateddodecahedron,
plotpoly

greatdodecahedron

Create a great dodecahedron.

Syntax
use polyhedra
greatdodecahedron;
greatdodecahedron(style);
(X, Y, Z, ind) = greatdodecahedron

Description
Without output argument, greatdodecahedron displays a great do-
decahedron, i.e. a regular nonconvex solid whose twelve faces are
regular pentagons. By default, edges are not drawn. An optional string
input argument specifies the edge style.

With four output arguments, greatdodecahedron produces the X,
Y, Z and ind arrays expected by plotpoly, and it does not display
anything.

Libraries — polyhedra 751

See also
dodecahedron, greatstellateddodecahedron, greaticosahedron,
plotpoly

greaticosahedron

Create a great dodecahedron.

Syntax
use polyhedra
greaticosahedron;
greaticosahedron(style);
(X, Y, Z, ind) = greaticosahedron

Description
Without output argument, greaticosahedron displays a great icosa-
hedron, i.e. a regular nonconvex solid whose twenty faces are equi-
lateral triangles. By default, edges are not drawn. An optional string
input argument specifies the edge style.

With four output arguments, greaticosahedron produces the X,
Y, Z and ind arrays expected by plotpoly, and it does not display
anything.

See also
icosahedron, greatdodecahedron, plotpoly

greatstellateddodecahedron

Create a great stellated dodecahedron.

Syntax
use polyhedra
greatstellateddodecahedron;
greatstellateddodecahedron(style);
(X, Y, Z, ind) = greatstellateddodecahedron

Description
Without output argument, greatstellateddodecahedron displays a
great stellated dodecahedron, i.e. a regular nonconvex solid whose
twelve faces are regular star pentagons and where each vertex is com-
mon to three faces. By default, edges are not drawn. An optional
string input argument specifies the edge style.

With four output arguments, greatstellateddodecahedron pro-
duces the X, Y, Z and ind arrays expected by plotpoly, and it does
not display anything.

752 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
dodecahedron, greatdodecahedron, smallstellateddodecahedron,
plotpoly

icosahedron

Create a regular icosahedron.

Syntax
use polyhedra
icosahedron;
icosahedron(style);
(X, Y, Z, ind) = icosahedron

Description
Without output argument, icosahedron displays a regular convex
icosahedron, i.e. a convex solid whose twenty faces are equilateral
triangles. By default, edges are not drawn. An optional string input
argument specifies the edge style.

With four output arguments, icosahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

See also
tetrahedron, cube, octahedron, dodecahedron, plotpoly

octahedron

Create a regular octahedron.

Syntax
use polyhedra
octahedron;
octahedron(style);
(X, Y, Z, ind) = octahedron

Description
Without output argument, octahedron displays a regular octahedron,
i.e. a convex solid whose eight faces are equilateral triangles. By de-
fault, edges are not drawn. An optional string input argument specifies
the edge style.

With four output arguments, octahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

Libraries — polyhedra 753

See also
tetrahedron, cube, dodecahedron, icosahedron, plotpoly

smallstellateddodecahedron

Create a small stellated dodecahedron.

Syntax
use polyhedra
smallstellateddodecahedron;
smallstellateddodecahedron(style);
(X, Y, Z, ind) = smallstellateddodecahedron

Description
Without output argument, smallstellateddodecahedron displays a
small stellated dodecahedron, i.e. a regular nonconvex solid whose
twelve faces are regular star pentagons and where each vertex is com-
mon to five faces. By default, edges are not drawn. An optional string
input argument specifies the edge style.

With four output arguments, smallstellateddodecahedron pro-
duces the X, Y, Z and ind arrays expected by plotpoly, and it does
not display anything.

See also
dodecahedron, greatdodecahedron, greatstellateddodecahedron,
plotpoly

tetrahedron

Create a regular tetrahedron.

Syntax
use polyhedra
tetrahedron;
tetrahedron(style);
(X, Y, Z, ind) = tetrahedron

Description
Without output argument, tetrahedron displays a regular tetrahe-
dron, i.e. a solid whose four faces are equilateral triangles. By default,
edges are not drawn. An optional string input argument specifies the
edge style.

With four output arguments, tetrahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

754 Sysquake Remote ©1999-2016, Calerga Sàrl

See also
cube, octahedron, dodecahedron, icosahedron, plotpoly

8.17 solids

Library solids implements functions which create solid shapes in 3D.
Solids are generated with parametric equations and displayed with
surf. When called without output argument, with an optional trail-
ing string argument for the edge style, the solid is displayed with the
current scaling and color map. With output arguments, arrays X, Y,
Z expected by surf or mesh are produced. They can be modified to
move, scale or stretch the solids.

The following statement makes available functions defined in
solids:

use solids

Functions

cone

Cone.

Syntax
use solids
cone
cone(cap)
cone(cap, n)
cone(cap, n, style)
(X, Y, Z) = cone
(X, Y, Z) = cone(n)

Description
Without output argument, cone draws a cone approximated by a poly-
hedron. The optional first input argument, a logical value which is true
by default, specifies if the cap is included. The optional second input
argument, an integer, specifies the number of discrete values for the
parameter which describes its surface.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, cone produces the X, Y, and Z arrays
expected by surf or mesh, and it does not display anything.

Libraries — solids 755

See also
cylinder, sphere, cube, surf

crosscap

Cross-cap.

Syntax
use solids
crosscap
crosscap(n)
crosscap(n, style)
(X, Y, Z) = crosscap
(X, Y, Z) = crosscap(n)

Description
Without output argument, crosscap draws a cross-cap (a
self-intersecting surface) approximated by a polyhedron. With an
input argument, crosscap(n) draws a cross-cap where the two
parameters which describe its surface are sampled with n discrete
values.

By default, edges are not drawn. An optional second input argu-
ment, a string, specifies the edge style; it corresponds to the style
argument of surf.

With three output arguments, crosscap produces the X, Y, and Z
arrays expected by surf or mesh, and it does not display anything.

See also
klein, klein8, sphere, sphericon, surf

cylinder

Cylinder.

Syntax
use solids
cylinder
cylinder(cap)
cylinder(cap, n)
cylinder(cap, n, style)
(X, Y, Z) = cylinder
(X, Y, Z) = cylinder(n)

756 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
Without output argument, cylinder draws a cylinder approximated
by a polyhedron. The optional first input argument, a logical value
which is true by default, specifies if caps are included. The optional
second input argument, an integer, specifies the number of discrete
values for the parameter which describes its surface.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, cylinder produces the X, Y, and Z
arrays expected by surf or mesh, and it does not display anything.

See also
cone, sphere, torus, cube, surf

klein

Klein bottle.

Syntax
use solids
klein
klein(p)
klein(p, n)
klein(p, n, style)
(X, Y, Z) = ...

Description
Without output argument, klein draws a Klein bottle approximated
by a polyhedron. With an input argument, klein(p) uses parameters
stored in structure p. The following fields are used:

Field Description Default value
r0 average tube radius 0.7
d tube variation 0.5
h half height 3

With two input arguments, klein(p,n) draws a Klein bottle where
the two parameters which describe its surface are sampled with n dis-
crete values.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, klein produces the X, Y, and Z arrays
expected by surf or mesh, and it does not display anything.

Libraries — solids 757

See also
klein8, crosscap, surf

klein8

Figure 8 Klein bottle immersion.

Syntax
use solids
klein8
klein8(r)
klein8(r, n)
klein8(r, n, style)
(X, Y, Z) = ...

Description
Without output argument, klein8 draws a figure 8 Klein bottle immer-
sion (a closed, self-intersecting surface with one face) approximated
by a polyhedron. With an input argument, klein8(r) draws the sur-
face with a main radius of r (the default value is 1).

With two input arguments, klein8(r,n) samples the two parame-
ters which describe its surface with n discrete values.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, klein8 produces the X, Y, and Z ar-
rays expected by surf or mesh, and it does not display anything.

See also
klein, crosscap, surf

sphere

Sphere.

Syntax
use solids
sphere
sphere(n)
sphere(n, style)
(X, Y, Z) = sphere
(X, Y, Z) = sphere(n)

758 Sysquake Remote ©1999-2016, Calerga Sàrl

Description
Without output argument, sphere draws a sphere approximated by
a polyhedron. With an input argument, sphere(n) draws a sphere
where the two parameters which describe its surface are sampled with
n discrete values.

By default, edges are not drawn. An optional second input argu-
ment, a string, specifies the edge style; it corresponds to the style
argument of surf.

With three output arguments, sphere produces the X, Y, and Z ar-
rays expected by surf or mesh, and it does not display anything.

See also
cylinder, cone, torus, cube, surf

sphericon

Sphericon.

Syntax
use solids
sphericon
sphericon(n)
sphericon(n, style)
(X, Y, Z) = sphericon
(X, Y, Z) = sphericon(n)

Description
Without output argument, sphericon draws a sphericon (a 3D shape
made from a bicone with a 90-degree apex, cut by a plane containing
both apices, where one half is rotated by 90 degrees) approximated by
a polyhedron. With an input argument, sphericon(n) draws a spheri-
con where the two parameters which describe its surface are sampled
with n discrete values.

By default, edges are not drawn. An optional second input argu-
ment, a string, specifies the edge style; it corresponds to the style
argument of surf.

With three output arguments, sphericon produces the X, Y, and Z
arrays expected by surf or mesh, and it does not display anything.

See also
sphere, crosscap, surf

Libraries — solids 759

torus

Torus.

Syntax
use solids
torus
torus(r)
torus(r, n)
torus(r, n, style)
(X, Y, Z) = ...

Description
Without output argument, torus draws a torus approximated by a
polyhedron with a main radius of 1 and a tube radius of 0.5. With
an input argument, torus(r) draws a torus with tube radius r. With
two input arguments, torus(r,n) draws a torus where the two param-
eters which describe its surface are sampled with n discrete values.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, torus produces the X, Y, and Z arrays
expected by surf or mesh, and it does not display anything.

See also
sphere, cylinder, surf

Index

abs, 160
acos, 161
acosd, 161
acosh, 162
acot, 162
acotd, 161
acoth, 162
acsc, 163
acscd, 161
acsch, 163
activeregion, 454
addpol, 217
alawcompress, 729
alawexpand, 730
all, 389
altscale, 455
and, 130
angle, 163
any, 389
apply, 373
area, 455
arrayfun, 264
asec, 164
asecd, 161
asech, 164
asin, 165
asind, 161
asinh, 165
assert, 99
atan, 166
atan2, 166
atan2d, 161
atand, 161
atanh, 166

balance, 218
bar, 456

barh, 458
base32decode, 335
base32encode, 336
base64decode, 337
base64encode, 337
beginfigure, 539
beginning, 76
besselap, 681
besself, 682
beta, 167
betainc, 167
betaln, 168
bilinear, 683
bitall, 390
bitand, 390
bitany, 391
bitcmp, 392
bitget, 392
bitor, 393
bitset, 393
bitshift, 394
bitxor, 395
black2orangecm, 742
black2red2whitecm, 743
blkdiag, 638
blue2greencm, 743
blue2yellow2redcm, 744
bodemag, 505
bodephase, 506
bootstrp, 648
break, 83
builtin, 100
buttap, 683
butter, 684
bwrite, 408

c2dm, 399

762 Sysquake Remote ©1999-2016, Calerga Sàrl

cal2julian, 441
camdolly, 492
camorbit, 493
campan, 493
campos, 494
camproj, 494
camroll, 495
camtarget, 495
camup, 495
camva, 496
camzoom, 496
care, 219
cart2pol, 168
cart2sph, 169
case, 83
cast, 170
cat, 265
catch, 84
cd, 444
cdf, 170
ceil, 171
cell, 265
cell array, 52
cell2struct, 377
cellfun, 266
char, 338
charset, 63
cheb1ap, 684
cheb2ap, 685
cheby1, 685
cheby2, 686
chol, 220
circle, 458
circshift, 637
class, 384
class bitfield

int16, 678
int32, 678
int8, 678
uint16, 680
uint32, 680
uint8, 680

class bitfield
beginning, 675
bitfield, 675
disp, 677

double, 677
end, 677
find, 678
length, 679
sign, 680

class distribution
cdf, 658
icdf, 658
mean, 660
median, 660
pdf, 661
random, 661
std, 662
var, 662

class frd
fcat, 707
frd, 693
frdata, 708
fselect, 708
interp, 709

class lti
append, 701
beginning, 702
bodemag, 723
bodephase, 723
c2d, 703
connect, 703
ctranspose, 704
d2c, 704
dcgain, 705
end, 705
evalfr, 706
feedback, 707
impulse, 724
inv, 709
isct, 710
isdt, 710
isempty, 710
isproper, 711
issiso, 711
lsim, 725
minreal, 712
minus, 713
mldivide, 713
mrdivide, 713
mtimes, 714

Index 763

nichols, 726
norm, 714
nyquist, 726
parallel, 715
piddata, 715
pidstddata, 716
plus, 716
pzmap, 727
repmat, 717
rlocus, 728
series, 717
size, 718
ssdata, 718
step, 729
subsasgn, 718
subsref, 719
tfdata, 720
transpose, 721
uminus, 721
uplus, 721
zpkdata, 722

class pid
mathml, 711

class pid
pid, 694

class pidstd
mathml, 711

class pidstd
pidstd, 696

class polynom
mathml, 668

class polynom
diff, 666
disp, 664
double, 665
feval, 667
inline, 667
int, 666
polynom, 663
subst, 665

class ratfun
mathml, 672

class ratfun
den, 670
diff, 670
disp, 669

feval, 671
inline, 671
num, 670
ratfun, 668

class ratio
char, 674
disp, 674
double, 674
ratio, 673

class ss
augstate, 702
ctrb, 704
initial, 725
obsv, 714
ss, 698

class tf
mathml, 711

class tf
tf, 699

class zpk
mathml, 711

class zpk
zpk, 701

clc, 409
clear, 101
clock, 437
colon, 130
color, 451
colormap, 459
compan, 638
complex, 172
cond, 221
cone, 754
Configuration

SQRCleanImagesCmd, 11
SQRDefaultFigureSize, 12
SQRDisableFunction, 12
SQRegistration, 16
SQREnable, 12
SQREnableAns, 13
SQREnableHelp, 13
SQREnableStderr, 13
SQRFigureFont, 13
SQRImageFileType, 13
SQRImagePath, 14
SQRImageQuality, 14

764 Sysquake Remote ©1999-2016, Calerga Sàrl

SQRInputLimit, 14
SQRLibraryPath, 14
SQRLoadExtension, 15
SQRLocalLibraries, 15
SQRMemory, 15
SQROutputLimit, 15
SQRRandomSeed, 15
SQRStartup, 16
SQRSubdirEnforcement, 16
SQRTimeout, 16
SQRTransparent-

Background,
17

conj, 172
continue, 84
contour, 460
contour3, 497
conv, 221
conv2, 222
corrcoef, 639
cos, 173
cosd, 173
cosh, 174
cot, 174
coth, 174
cov, 223
cputime, 444
cross, 224
crosscap, 755
csc, 175
csch, 175
ctranspose, 130
cube, 749
cummax, 225
cummin, 225
cumprod, 226
cumsum, 227
cumtrapz, 640
cyan2magentacm, 744
cylinder, 755

d2cm, 401
dare, 227
dash pattern, 451
daspect, 497
datestr, 737

datevec, 738
dbodemag, 508
dbodephase, 509
deal, 102
deblank, 338
deconv, 228
define, 84
deflate, 575
delaunay, 303
delaunayn, 304
det, 229
diag, 267
diff, 230
diln, 175
dimpulse, 510
dinitial, 511
dir, 445
disp, 409
displayhtmlform, 635
dlsim, 512
dlyap, 230
dmargin, 402
dnichols, 513
dnyquist, 514
dodecahedron, 750
dos, 445
dot, 231
double, 176
dpcmdeco, 730
dpcmenco, 731
dpcmopt, 732
dsigma, 515
dstep, 517
dumpvar, 103

eig, 231
ellip, 687
ellipam, 176
ellipap, 688
ellipe, 177
ellipf, 178
ellipj, 178
ellipke, 179
else, 90
elseif, 90
end, 77

Index 765

endfigure, 541
endfunction, 86
eps, 180
eq, 130
erf, 180
erfc, 181
erfcinv, 181
erfcx, 182
erfinv, 182
erlocus, 518
error, 103
escapeshellarg, 541
escapeshellcmd, 542
eval, 105
exist, 105
exp, 183
expm, 232
expm1, 183
external code

LMECB_GetArray, 619
LMECB_GetBinaryObject,

619
LMECB_GetMatrix, 618
LMECB_GetObject, 619
LMECB_GetScalar, 619
LMECB_GetString, 619
LMECB_ObjectToArray,

620
exteval, 552
extload, 552
extunload, 553
eye, 268

factor, 184
factorial, 184
false, 395
fclose, 410
feof, 410
feval, 106
fevalx, 269
fflush, 411
fft, 233
fft2, 234
fftn, 234
fftshift, 640
fgetl, 411

fgets, 412
fieldnames, 378
figurelist, 543
figurestyle, 461
fileparts, 427
filesep, 428
filled shape, 451
filter, 235
filter2, 641
find, 269
fionread, 412
fix, 185
flintmax, 185
flipdim, 271
fliplr, 271
flipud, 272
floor, 186
fminbnd, 313
fminsearch, 314
fontset, 464
fopen, 426
for, 85
format, 412
fplot, 465
fprintf, 414
fread, 415
frewind, 416
fscanf, 417
fseek, 417
fsolve, 316
ftell, 418
fullfile, 429
fun2str, 107
function

inline, 55
reference, 55

function, 86
funm, 236
fwrite, 418
fzero, 317

gamma, 186
gammainc, 187
gammaln, 188
gcd, 188
ge, 130

766 Sysquake Remote ©1999-2016, Calerga Sàrl

geomean, 649
getclick, 543
getElementById, 432
getElementsByTagName, 432
getenv, 446
getfield, 378
gethostbyname, 591
gethostname, 591
getpid, 613
global, 77
goldenratio, 189
Graphic ID, 452
graycm, 745
graycode, 396
greatdodecahedron, 750
greaticosahedron, 751
greatstellateddodecahedron,

751
green2yellowcm, 745
grid, 453
griddata, 305
griddatan, 306
gt, 130
gzip, 577
gzwrite, 577

hankel, 641
harmmean, 649
hess, 240
hgrid, 519
hideimplementation, 89
hist, 642
hmac, 339
horzcat, 130
householder, 237
householderapply, 238
hstep, 520
htmlspecialchars, 544
http, 544
httpheader, 546
httpvars, 547
huecm, 746
hypot, 189

i, 189
icdf, 190

icosahedron, 752
if, 90
ifft, 238
ifft2, 239
ifftn, 239
ifftshift, 642
igraycode, 396
imag, 191
image, 466
imageread, 579
imagereadset, 580
imageset, 581
imagewrite, 582
impulse, 522
include, 91
includeifexists, 92
ind2sub, 272
inf, 192
inferiorto, 385
inflate, 578
info, 107
initial, 523
inline, 111
inline data, 51
inmem, 114
int16, 310
int32, 310
int64, 310
int8, 310
integral, 319
interp1, 273
interpn, 274
interprgbcm, 746
intersect, 276
inthist, 277
intmax, 311
intmin, 311
inv, 241
ipermute, 277
iqr, 650
isa, 386
iscell, 279
ischar, 341
iscolumn, 192
isdefined, 114
isdigit, 341

Index 767

isempty, 278
isequal, 111
isfield, 378
isfinite, 193
isfloat, 193
isfun, 115
isglobal, 115
isinf, 194
isinteger, 194
iskeyword, 116
isletter, 342
islist, 374
islogical, 397
ismac, 116
ismatrix, 195
ismember, 279
isnan, 196
isnull, 386
isnumeric, 196
isobject, 387
ispc, 117
isprime, 197
isquaternion, 366
isreal, 643
isrow, 197
isscalar, 198
isspace, 342
isstruct, 379
isunix, 117
isvector, 198

j, 189
join, 374
julian2cal, 441

kill, 613
klein, 756
klein8, 757
kron, 241
kurtosis, 242

label, 468
LAPACK

balance, 560
chol, 560
det, 561
eig, 562

hess, 563
inv, 563
logm, 564
lu, 565
null, 566
operator /, 559
operator \, 558
operator *, 557
orth, 566
pinv, 567
qr, 568
qz, 569
rank, 570
rcond, 570
schur, 571
sqrtm, 572
svd, 573

lasterr, 117
lasterror, 118
latex2mathml, 343
launchurl, 597
lcm, 199
ldivide, 130
le, 130
legend, 468
length, 280
library

lti, 691, 722
probdist, 657
ratio, 672
stat, 648
stdlib, 637
wav, 735

lightangle, 498
line, 470
line3, 498
linprog, 242
linspace, 280
list, 52
list2num, 375
lloyds, 732
LME, 43

command syntax, 46
comments, 44
error messages, 58
file descriptor, 57

768 Sysquake Remote ©1999-2016, Calerga Sàrl

function call, 45
input/output, 57
libraries, 46
named arguments, 45
program format, 43
statements, 43
types, 47
variable assignment, 75

log, 199
log10, 200
log1p, 200
log2, 201
logical, 397
logm, 243
logspace, 281
LongInt

longint, 574
lower, 345
lp2bp, 688
lp2bs, 689
lp2hp, 690
lp2lp, 690
lsim, 524
lsqcurvefit, 319
lsqnonlin, 321
lt, 130
lu, 244
lyap, 245

mad, 650
magenta2yellowcm, 747
magic, 281
makedist, 659
map, 375
map2int, 312
margin, 403
material, 499
matfiledecode, 442
matfileencode, 443
math, 471
mathml, 346
mathmlpoly, 347
matrixcol, 79
matrixrow, 80
max, 246
md5, 348

mean, 247
median, 247
mesh, 500
meshgrid, 282
methods, 387
min, 248
minus, 130
mldivide, 130
mod, 201
moment, 249
movezero, 404
mpower, 130
mrdivide, 130
mtimes, 130

namedargin, 118
nan, 202
nancorrcoef, 651
nancov, 651
nanmean, 652
nanmedian, 652
nanstd, 653
nansum, 654
nargin, 119
nargout, 121
nchoosek, 203
ndgrid, 283
ndims, 283
ne, 130
ngrid, 525
nichols, 526
nnz, 284
norm, 249
not, 130
nthroot, 203
null, 250
null (value), 387
num2cell, 284
num2list, 376
number, 49
numel, 285
nyquist, 528

object, 55, 56
octahedron, 752
ode23, 322

Index 769

ode45, 322
odeset, 325
ones, 286
operator

&, 152
&&, 153
@, 158
{}, 136
[], 134
:, 157
,, 155
’, 145
.’, 146
/, 141
./, 142
\, 142
.\, 143
., 137
==, 147
>=, 151
>, 150
<=, 151
<, 150
-, 139
=̃, 148
,̃ 152
|, 154
||, 154
(), 131
+, 138
,̂ 144
.̂, 145
?, 155
===, 147
;, 156
*, 140
.*, 140
=̃=, 149

optimset, 333
or, 130
orderfields, 379
orth, 251
otherwise, 92

pcolor, 472
pdf, 204

pdist, 654
perms, 643
permute, 286
persistent, 77
pi, 204
pinv, 251
plot, 473
plot3, 500
plotoption, 474
plotpoly, 501
plotroots, 529
plotset, 476
plus, 130
pol2cart, 204
polar, 480
poly, 252
polyder, 253
polyfit, 644
polyint, 254
polyval, 255
polyvalm, 644
posixtime, 438
power, 130
prctile, 655
primes, 645
private, 92
processhtmlform, 635
prod, 255
public, 93
pwd, 446

q2mat, 367
q2rpy, 367
q2str, 368
qimag, 368
qinv, 369
qnorm, 369
qr, 256
qslerp, 370
quad, 335
quantiz, 733
quaternion, 370
quiver, 481

rand, 287
randi, 288

770 Sysquake Remote ©1999-2016, Calerga Sàrl

randn, 289
random, 205
range, 655
rank, 257
rat, 206
rdivide, 130
real, 207
reallog, 208
realmax, 208
realmin, 208
realpow, 209
realsqrt, 209
red2yellowcm, 747
redirect, 419
regexp, 349
regexpi, 349
rem, 210
repeat, 93
replist, 377
repmat, 289
reshape, 290
responseset, 530
rethrow, 121
return, 94
rlocus, 532
rmfield, 381
rng, 291
roots, 257
rot90, 293
round, 210
roundn, 211
rpy2q, 371

sandbox, 127
sandboxtrust, 129
saxcurrentline, 433
saxcurrentpos, 433
saxnew, 433
saxnext, 434
saxrelease, 435
scale, 482
scale of figures, 453
scalefactor, 485
scaleoverview, 486
schur, 258
sec, 212

sech, 212
sensor3, 503
sepiacm, 748
sessionbegin, 548
sessionend, 548
sessionfetchvar, 548
sessionid, 549
sessionlist, 550
sessionresetall, 550
sessionstorevar, 550
set, 55
setdiff, 293
setenv, 447
setfield, 381
setstr, 354
setxor, 294
sgrid, 534
sha1, 354
sha2, 354
sigma, 536
sign, 211
signal, 613
sin, 213
sinc, 213
sind, 173
single, 213
sinh, 214
size, 295
skewness, 259
sleep, 447
smallstellateddodecahedron,

753
soapcall, 600
soapcallset, 601
soapreadcall, 602
soapreadresponse, 603
soapwritecall, 603
soapwritefault, 605
soapwriteresponse, 605
socketaccept, 592
socketconnect, 592
socketnew, 593
socketservernew, 593
socketset, 594
socketsetopt, 595
sort, 296

Index 771

sortrows, 645
sph2cart, 214
sphere, 757
sphericon, 758
split, 355
sprintf, 420
sqlite_changes, 585
sqlite_close, 586
sqlite_exec, 586
sqlite_last_insert_rowid,

587
sqlite_open, 587
sqlite_set, 588
sqlite_shell, 589
sqlite_tables, 590
sqlite_version, 590
sqrt, 215
sqrtm, 260
squareform, 656
squeeze, 297
sread, 422
ss2tf, 406
sscanf, 423
stairs, 451
std, 260
stems, 451
step, 536
str2fun, 122
str2obj, 123
strcmp, 356
strcmpi, 356
strfind, 357
string, 50
strmatch, 357
strrep, 358
strtok, 358
strtrim, 359
struct, 381
struct2cell, 382
structarray, 383
structmerge, 383
structure, 53
structure array, 54
style, 450
style parameter, 450
sub2ind, 298

subplotstyle, 486
subsasgn, 80
subspace, 646
subsref, 82
sum, 261
superclasses, 388
surf, 504
svd, 262
swapbytes, 215
switch, 95
swrite, 425
symbol shape, 451
syslog, 596

tan, 216
tanh, 216
tetrahedron, 753
text, 487
tf2ss, 407
thick line, 451
thin line, 451
tic, 438
tickformat, 488
ticks, 489
times, 130
title, 490
toc, 439
toeplitz, 647
torus, 759
trace, 263
transpose, 130
trapz, 647
tril, 298
trimmean, 656
triu, 299
true, 398
try, 96
tsearch, 307
tsearchn, 307
typecast, 217

uint16, 310
uint32, 310
uint64, 310
uint8, 310
ulawcompress, 734

772 Sysquake Remote ©1999-2016, Calerga Sàrl

ulawexpand, 735
uminus, 130
unicodeclass, 360
union, 300
unique, 301
unix, 448
unsetenv, 448
until, 97
unwrap, 302
uplus, 130
upper, 360
urldecode, 551
urldownload, 598
urlencode, 551
use, 97
useifexists, 98
utf32decode, 361
utf32encode, 361
utf8decode, 362
utf8encode, 362

value sequences, 54
var, 263
varargin, 124
varargout, 125
variables, 125
vertcat, 130
voronoi, 308
voronoin, 309

warning, 126
wavread, 735
wavwrite, 736
weekday, 739
which, 126
while, 98
whitecm, 748

xmlread, 435
xmlreadstring, 436
xmlrelease, 437
xmlrpccall, 606
xmlrpccallset, 607
xmlrpcreadcall, 608
xmlrpcreadresponse, 609
xmlrpcwritecall, 609
xmlrpcwritedata, 610

xmlrpcwritefault, 611
xmlrpcwriteresponse, 611
xor, 399

zeros, 302
zgrid, 538
zp2ss, 408
zread, 578
zscore, 657
zwrite, 579

	Introduction
	Programming model

	Installing Sysquake Remote
	Configuration

	LME Tutorial
	Simple operations
	Complex Numbers
	Vectors and Matrices
	Polynomials
	Strings
	Variables
	Loops and Conditional Execution
	Functions
	Local and Global Variables

	Sysquake Remote Tutorial
	magic.sqr
	Histogram
	command.sqr

	LME Reference
	Program format
	Function Call
	Named input arguments
	Command syntax
	Libraries
	Types
	Input and Output
	Error Messages
	Character Set
	List of Commands, Functions, and Operators
	Variable Assignment and Subscripting
	Programming Constructs
	Miscellaneous Functions
	Sandbox Function
	Operators
	Mathematical Functions
	Linear Algebra
	Array Functions
	Triangulation Functions
	Integer Functions
	Non-Linear Numerical Functions
	String Functions
	Quaternions
	List Functions
	Structure Functions
	Object Functions
	Logical Functions
	Dynamical System Functions
	Input/Output Functions
	File System Functions
	Path Manipulation Functions
	XML Functions
	Time Functions
	Date Functions
	MAT-files
	Shell
	Graphics
	Remarks on graphics
	Base Graphical Functions
	3D Graphics
	Graphics for Dynamical Systems
	Sysquake Remote Functions
	Dynamic Extension Loading

	Extensions
	Lapack
	Long Integers
	Data Compression
	Image Files
	SQLite
	Compiling the extension
	Sockets
	System Log
	Launch URL
	Download URL
	Web Services
	Signal

	External Code
	Implementation
	Callbacks
	Start up and shut down
	Examples
	Remarks

	Libraries
	sqr
	stdlib
	stat
	probdist
	polynom
	ratio
	bitfield
	filter
	lti
	lti (graphics)
	sigenc
	wav
	date
	constants
	colormaps
	polyhedra
	solids

	Index

